Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Racial Ethn Health Disparities ; 10(6): 2930-2943, 2023 12.
Article in English | MEDLINE | ID: mdl-36478269

ABSTRACT

BACKGROUND: Racial and ethnic disparities in COVID-19 infection and outcomes have been documented, but few studies have examined disparities in access to testing. METHODS: We conducted a mixed methods study of access to COVID-19 testing in the Somali immigrant community in King County, Washington, USA, early during the COVID-19 pandemic. In September 2020-February 2021, we conducted quantitative surveys in a convenience sample (n = 528) of individuals who had accessed PCR testing, recruited at King County testing sites near Somali population centers and through social media outreach in the Somali community. We compared self-identified Somali and non-Somali responses using Chi-square and Wilcoxon rank sum tests. We also conducted three Somali-language focus groups (n = 26) by video conference to explore Somali experiences with COVID-19 testing, and in-depth interviews with King County-based policymakers and healthcare workers (n = 13) recruited through the research team's professional network to represent key demographics and roles. Data were analyzed using qualitative rapid analysis to explore the county's COVID-19 testing landscape. RESULTS: Among 420 survey respondents who had received COVID-19 testing in the prior 90 days, 29% of 140 Somali vs. 11% of 280 non-Somali respondents tested because of symptoms (p = 0.001), with a trend for longer time from symptom onset to testing (a measure of testing access) among Somali respondents (median 3.0 vs. 2.0 days, p = 0.06). Focus groups revealed barriers to testing, including distrust, misinformation, stigma, language, lack of awareness, and transportation. Stakeholders responding from all sectors highlighted the importance of community partnership to improve access. CONCLUSION: Somali communities experience barriers to COVID-19 testing, as evidenced by the longer time from symptom onset to testing and corroborated by our qualitative findings. These barriers, both structural and community-derived, may be overcome through partnerships between government and community to support community-led, multilingual service delivery and racial representation among medical staff.


Subject(s)
COVID-19 , Pandemics , Humans , Somalia , COVID-19 Testing , Washington/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , Language
2.
J Am Chem Soc ; 144(3): 1332-1341, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35037457

ABSTRACT

The mature skeletons of hard corals, termed stony or scleractinian corals, are made of aragonite (CaCO3). During their formation, particles attaching to the skeleton's growing surface are calcium carbonate, transiently amorphous. Here we show that amorphous particles are observed frequently and reproducibly just outside the skeleton, where a calicoblastic cell layer envelops and deposits the forming skeleton. The observation of particles in these locations, therefore, is consistent with nucleation and growth of particles in intracellular vesicles. The observed extraskeletal particles range in size between 0.2 and 1.0 µm and contain more of the amorphous precursor phases than the skeleton surface or bulk, where they gradually crystallize to aragonite. This observation was repeated in three diverse genera of corals, Acropora sp., Stylophora pistillata─differently sensitive to ocean acidification (OA)─and Turbinaria peltata, demonstrating that intracellular particles are a major source of material during the additive manufacturing of coral skeletons. Thus, particles are formed away from seawater, in a presumed intracellular calcifying fluid (ICF) in closed vesicles and not, as previously assumed, in the extracellular calcifying fluid (ECF), which, unlike ICF, is partly open to seawater. After particle attachment, the growing skeleton surface remains exposed to ECF, and, remarkably, its crystallization rate varies significantly across genera. The skeleton surface layers containing amorphous pixels vary in thickness across genera: ∼2.1 µm in Acropora, 1.1 µm in Stylophora, and 0.9 µm in Turbinaria. Thus, the slow-crystallizing Acropora skeleton surface remains amorphous and soluble longer, including overnight, when the pH in the ECF drops. Increased skeleton surface solubility is consistent with Acropora's vulnerability to OA, whereas the Stylophora skeleton surface layer crystallizes faster, consistent with Stylophora's resilience to OA. Turbinaria, whose response to OA has not yet been tested, is expected to be even more resilient than Stylophora, based on the present data.


Subject(s)
Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL