Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Immunoassay Immunochem ; : 1-17, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627940

ABSTRACT

The objectives of this study are to evaluate caveolin-1 expression in endometrioid endometrial cancer and its correlation with clinicopathological parameters. Forty-four cases of endometrioid endometrial carcinomas underwent radical hysterectomy. The archived paraffin sections that were stained for caveolin-1 by immunohistochemistry, caveolin-1 expression were detected in cancerous epithelial cells in 18.2% of the cases, and stromal caveolin-1 was detected in 65.9% of the cases. Caveolin-1 expression in the epithelium showed a significant positive association with the T stage and the FIGO stage. Positive caveolin-1 expression in epithelium has a direct, positive and significant relationship with invasion of other organs and a direct and significant relationship with the advanced FIGO stage. As for caveolin-1 expression in the stroma, it showed a significant negative inversely significant association with myometrial invasion. Also, there is a significant negative association between caveolin-1 expression in the epithelium and its expression in the stroma. We conclude that caveolin-1 expression strongly plays a critical role in endometrioid endometrial carcinoma as a tumor suppressor or promoter of invasion. In early lesions, high stromal levels appear to be protective against progression. While decreased stromal expression and increased epithelial expression were associated with aggressive tumors.

2.
J Ethnopharmacol ; 327: 117970, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38428660

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Solenostemma argel is widely distributed in Africa & Asia with traditional usage in alleviating abdominal colic, aches, & cramps. This plant is rich in phytochemicals, which must be explored for its pharmacological effects. PURPOSE: Peptic Ulcer Disease (PUD) is the digestion of the digestive tube. PUD not only interferes with food digestion & nutrient absorption, damages one of the largest defensive barriers against pathogenic micro-organisms, but also impedes drug absorption & bioavailability, rendering the oral route, the most convenient way, ineffective. Omeprazole, one of the indispensable cost-effective proton-pump inhibitors (PPIs) extensively prescribed to control PUD, is showing growing apprehensions toward multiple drug interactions & side effects. Hence, finding a natural alternative with Omeprazole-like activity & limited side effects is a medical concern. STUDY DESIGN: Therefore, we present Stemmoside C as a new gastroprotective phytochemical agent isolated from Solenostemma argel to be tested in upgrading doses against ethanol-induced gastric ulcers in mice compared to negative, positive, & reference Omeprazole groups. METHODS: We carried out in-depth pharmacological & histopathological studies to determine the possible mechanistic pathway. RESULTS: Our results showed that Stemmoside C protected the stomach against ethanol-induced gastric ulcers parallel to Omeprazole. Furthermore, the mechanistic studies revealed that Stemmoside C produced its effect using an orchestrated array of different mechanisms. Stemmoside C stimulates stomach defense by increasing COX-2, PGE-2, NO, & TFF-1 healing factors, IL-10 anti-inflammatory cytokine, & Nrf-2 & HO-1 anti-oxidant pathways. It also suppresses stomach ulceration by inhibiting leucocyte recruitment, especially neutrophils, leading to subsequent inhibition of NF-κBp65, TNF-α, IL-1ß, & iNOS pro-inflammatory cytokines & JAK-1/STAT-3 inflammation-induced carcinogenicity cascade in addition to MMP-9 responsible for tissue degradation. CONCLUSION: These findings cast light on Stemmoside C's clinical application against gastric ulcer progression, recurrence, & tumorigenicity & concurrently with chemotherapy.


Subject(s)
Anti-Ulcer Agents , Stomach Ulcer , Mice , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/pathology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Omeprazole/pharmacology , Omeprazole/therapeutic use , Ethanol/pharmacology , Cytokines/metabolism , Gastric Mucosa
3.
Article in English | MEDLINE | ID: mdl-38430357

ABSTRACT

Hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related deaths worldwide. Current treatment strategies include surgical resection, liver transplantation, liver-directed therapy, and systemic therapy. Sorafenib (Sor) is the first systemic drug authorized by the US Food and Drug Administration (FDA) for HCC treatment. Nevertheless, the conventional oral administration of Sor presents several limitations: poor solubility, low bioavailability, drug resistance development, and off-target tissue accumulation, leading to numerous adverse effects. Nano-emulsion, a nano-delivery system, is a viable carrier for poorly water-soluble drugs. It aims to enhance drug bioavailability, target organ accumulation, and reduce off-target tissue exposure, thus improving therapeutic outcomes while minimizing side effects. This study formulated Sor nano-emulsion (Sor NanoEm) using the homogenization technique. The resultant nano-emulsion was characterized by particle size (121.75 ± 12 nm), polydispersity index (PDI; 0.310), zeta potential (-12.33 ± 1.34 mV), viscosity (34,776 ± 3276 CPs), and pH (4.38 ± 0.3). Transmission Electron Microscopy exhibited spherical nano-droplets with no aggregation signs indicating stability. Furthermore, the encapsulation of Sor within the nano-emulsion sustained its release, potentially reducing the frequency of therapeutic doses. Cytotoxicity assessments on the HepG2 cell line revealed that Sor NanoEm had a significantly (P < 0.05) more potent cytotoxic effect compared to Sor suspension. Subsequent tests highlighted superior pharmacokinetic parameters and reduced dosage requirements of Sor NanoEm in mice. It exhibited an enhanced safety profile, particularly in behavior, brain, and liver, compared to its suspended form. These findings underscore the enhanced pharmacological and toxicological attributes of Sor Nano-emulsion, suggesting its potential utility in HCC treatment.

5.
Article in English | MEDLINE | ID: mdl-37966574

ABSTRACT

Di-(2-ethylhexyl) phthalate (DEHP) is the most abundant phthalate threatening public health-induced neurotoxicity. This neurotoxicity is associated with behavioral and biochemical deficits in male rats. Our study investigated the neuroprotective effect of ferulic acid (FA) on male rats exposed to DEHP. Thirty-two male Wistar rats were assigned to four groups. Group I control rats received corn oil, group II intoxicated rats received 300 mg/kg of DEHP, group III received 300 mg/kg of DEHP + 50 mg/kg of FA, and group IV received 50 mg/kg of FA, all agents administrated daily per os for 30 days. Anxiety-like behavior, spatial working memory, and recognition memory were assessed. Also, brain oxidative stress biomarkers, including brain malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), superoxide dismutase (SOD), brain-derived neurotrophic factor (BDNF) as well as heme oxygenase-1 (HO-1) were measured. Moreover, brain histopathology examinations associated with immunohistochemistry determination of brain caspase-3 were also evaluated. Furthermore, docking simulation was adapted to understand the inhibitory role of FA on caspase-3 and NO synthase. Compared to DEHP-intoxicated rats, FA-treated rats displayed improved cognitive memory associated with a reduced anxious state. Also, the redox state was maintained with increased BNDF levels. These changes were confirmed by restoring the normal architecture of brain tissue and a decrement in the immunohistochemistry caspase-3. In conclusion, FA has potent antioxidant and antiapoptotic properties that confirm the neuroprotective activity of FA, with a possible prospect for its therapeutic capabilities and nutritional supplement value.

6.
Acta Vet Scand ; 65(1): 44, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37770986

ABSTRACT

BACKGROUND: Sodium butyrate (SB) is a short-chain fatty acid and a safe antibiotic alternative. During 35 days, this study compared the impact of coated SB (Butirex C4) and lincomycin (Lincomix) on broiler growth, gut health, and litter hygiene in 1200 one-day-old Ross-308 broiler chicks that were randomly assigned into 5-dietary groups with 5-replications each. Groups divided as follows: T1: Basal diet (control), T2: Basal diet with buffered SB (1 kg/ton starter feed, 0.5 kg/ton grower-finisher feeds), T3: Basal diet with 100 g/ton lincomycin, T4: Basal diet with buffered SB (0.5 kg/ton starter feed, 0.25 kg/ton grower-finisher feeds) + 50 g/ton lincomycin, and T5: Basal diet with buffered SB (1 kg/ton starter feed, 0.5 kg/ton grower-finisher feeds) + 50 g/ton lincomycin. Birds were housed in a semi-closed deep litter house, where feed and water were available ad libitum. Results were statistically analyzed using ANOVA and Tukey's post hoc tests. RESULTS: Combined dietary supplementation with SB and lincomycin (T4 and T5) significantly enhanced body weights, weight gains, feed conversion ratio, and profitability index. Also, carcasses in T4 and T5 exhibited the highest dressing, breast, thigh, and liver yields. T5 revealed the best blood biochemical indices, while T3 showed significantly elevated liver and kidney function indices. T4 and T5 exhibited the highest expression levels of IGF-1 and TLR4 genes, the greatest villi length of the intestinal mucosa, and the lowest levels of litter moisture and nitrogen. Clostridia perfringens type A alpha-toxin gene was confirmed in birds' caeca, with the lowest clostridial counts defined in T4. CONCLUSIONS: Replacing half the dose of lincomycin (50 g/ton) with 0.5 or 1 kg/ton coated SB as a dietary supplement mixture showed the most efficient privileges concerning birds' performance and health.


Subject(s)
Chickens , Toll-Like Receptor 4 , Animals , Butyric Acid/metabolism , Lincomycin/pharmacology , Insulin-Like Growth Factor I/genetics , Diet/veterinary , Dietary Supplements , Animal Feed/analysis
7.
Metabolites ; 13(7)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37512493

ABSTRACT

Plants belonging to the Launaea genus have been extensively utilized ethnopharmacologically to treat a variety of diseases, including kidney disorders. Chromium is a common industrial pollutant that has been linked to kidney disease. The present work was designed for the investigation of the UPLC-QTOF-MS/MS metabolite profile of the L. mucronate ethanolic extract (LME), along with assessing the mechanistic protective actions of LME and its nano-silver formulation (LMNS) against K2Cr2O7-induced nephrotoxicity in rats. LMNE was successfully biosynthesized and confirmed using UV-Visible (UV-Vis) spectroscopy and transmission electron microscopy (TEM). The nephroprotective effects of LME and LMNE was assessed in rats exposed to potassium dichromate (K2Cr2O7, 15 mg/kg BW) to cause nephrotoxicity. LME and LMNS, separately, were administered twice daily for 14 days at doses of 200 and 400 mg/kg BW, respectively. The kidney function, catalase, UGT, Nrf2, PGE2, Cox-2, ERK, and MAPK levels in renal tissue were all assessed, along with histopathological examinations for exploring their ameliorative effects. Forty-five bioactive metabolites were annotated belonging to flavonoids, phenolic and organic acids, coumarins, and fatty acids. Metabolite profiling revealed that chlorogenic acid, apigenin, and luteolin glycosides were the main phenolics, with chlorogenic acid-O-hexoside reported for the first time in LME. The findings revealed that the serum kidney function indicators (urea and creatinine) were markedly elevated in K2Cr2O7-intoxicated rats. Furthermore, inflammatory indicators (COX-2 and PGE2), MAPK, and ERK were all markedly elevated in kidney tissue, whereas catalase, UGT, and Nrf2 levels were downregulated. Histological and immunohistochemical assays confirmed the toxic effects of K2Cr2O7 in the kidneys. In contrast, the administration of LME and LMNS prior to K2Cr2O7 considerably improved the architecture of the renal tissue, while also restoring levels of most biochemical markers. Functioning via the inhibition of the MAPK/ERK pathway, activating Nrf2, and modifying the antioxidant and metabolic enzymes, LME and LMNS exerted their nephroprotective effects against K2Cr2O7-induced toxicity.

8.
Environ Sci Pollut Res Int ; 30(25): 67771-67787, 2023 May.
Article in English | MEDLINE | ID: mdl-37115449

ABSTRACT

Hexavalent chromium salt, like potassium dichromate (PD), is chromium's most precarious valence state in industrial wastes. Recently, there has been increasing interest in ß-sitosterol (BSS), a bioactive phytosterol, as a dietary supplement. BSS is recommended in treating cardiovascular disorders due to its antioxidant effect. Trimetazidine (TMZ) was used traditionally for cardioprotection. Through the administration of BSS and TMZ, the cardiotoxic effects of PD were to be countered in this study, in addition to examining the precise mechanism of PD-induced cardiotoxicity. Thirty male albino rats were divided into five groups; the control group: administered normal saline daily (3 mL/kg); the PD group: administered normal saline daily (3 mL/kg); BSS group: administered BSS daily (20 mg/kg); TMZ group: administered TMZ daily (15 mg/kg); and the BSS + TMZ group: administered both BSS (20 mg/kg) and TMZ (15 mg/kg) daily. All experimental groups, except the control, received on the 19th day a single dose of PD (30 mg/kg/day, S.C.). Normal saline, BSS, and TMZ were received daily for 21 consecutive days p.o. The exposure to PD promoted different oxidative stresses, pro-inflammatory, and cardiotoxicity biomarkers. BSS or TMZ succeeded solely in reducing these deleterious effects; however, their combination notably returned measured biomarkers close to normal values. The histopathological investigations have supported the biochemical findings. The combination of BSS and TMZ protects against PD cardiotoxicity in rats by reducing oxidative stress and apoptotic and inflammatory biomarkers. It may be promising for alleviating and protecting against PD-induced cardiotoxicity in people at an early stage; however, these findings need further clinical studies to be confirmed. HIGHLIGHTS: • Potassium dichromate induces cardiotoxicity in rats through the upregulation of oxidative stress, proinflammatory, and apoptotic pathways biomarkers. • ß-Sitosterol possesses a possible cardioprotective effect by modulating several signaling pathways. • Trimetazidine, the antianginal agent, has a potential cardioprotective impact on PD-intoxicated rat model. • The combination of ß-Sitosterol and trimetazidine was the best in modulating different pathways involved in PD cardiotoxicity in rats via the interplay between NF-κB/AMPK/mTOR/TLR4 and HO-1/NADPH signaling pathways.


Subject(s)
Trimetazidine , Male , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , Biomarkers , Cardiotoxicity/drug therapy , NADP/metabolism , NADP/pharmacology , NF-kappa B/metabolism , Potassium Dichromate , Saline Solution/pharmacology , Signal Transduction , Toll-Like Receptor 4 , TOR Serine-Threonine Kinases/metabolism , Trimetazidine/pharmacology , Trimetazidine/therapeutic use , Animals , Rats
9.
Neurotoxicology ; 95: 232-243, 2023 03.
Article in English | MEDLINE | ID: mdl-36822375

ABSTRACT

BACKGROUND: With the recent growth in the applications of silver nanoparticles (Ag-NPs), worries about their harmful effects are increasing. Selenium plays a vital role in the antioxidant defense system as well as free radical scavenging activity. OBJECTIVES: This study aims to inspect the neuroprotective effect of selenium-loaded chitosan nanoparticles (CS-SeNPs) against the adverse impact of Ag-NPs on brain tissue in adult rats. DESIGN: Rats were divided into four groups: group I (control) was administered distilled water (0.5 mL/kg), group II was administered Ag-NPs (100 mg/kg), group III was administered Ag-NPs (100 mg/kg) and CS- SeNPs (0.5 mg/kg) and group IV received only CS- SeNPs (0.5 mg/kg) daily by oral gavage. After 60 days, rats were subjected to behavioral assessment and then euthanized. Brain tissues were obtained for estimation of total antioxidant capacity (TAC), malondialdehyde (MDA), 8-hydroxy-2-deoxy Guanosine (8-OHdG), and Nuclear Factor Erythroid 2 Like Protein 2 (Nrf2). Also, histological examination of the brain and immunohistochemical detection of glial fibrillary acidic protein (GFAP) were investigated RESULTS: exposure to Ag-NPs induced marked neurotoxicity in the brain tissue of rats that was manifested by decreased levels of TAC and Nrf2 with increased levels of MDA and 8-OHdG. Also, various pathological lesions with an increase in the number of GFAP immunoreactive cells were detected. While brain tissue of rats received Ag-NPs plus CS-SeNPs group (III) revealed significantly fewer pathological changes. CONCLUSION: Co-administration of CS-SeNPs significantly ameliorates most of the Ag-NPs-induced brain damage.


Subject(s)
Chitosan , Metal Nanoparticles , Nanoparticles , Neuroprotective Agents , Selenium , Rats , Animals , Selenium/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Neuroprotective Agents/pharmacology , Chitosan/pharmacology , Silver/toxicity , Metal Nanoparticles/toxicity , NF-E2-Related Factor 2/metabolism , Oxidative Stress
10.
Inflammopharmacology ; 31(2): 859-875, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36773191

ABSTRACT

In this study, the anti-inflammatory effects of the methanolic extract (TE) of Plumeria obtusa L. (aerial parts) and its fractions were evaluated in vitro, and active fraction was evaluated in vivo. Among tested extracts, dichloromethane fraction (DCM-F) exhibited the strongest inhibition of lipopolysaccharide (LPS)-induced nitric oxide (NO) in RAW 264.7 macrophages. The effect of DCM-F on LPS-induced acute lung injury (ALI) in mice was studied. The animals were divided into five groups (n = 7) randomly; Gp I: negative control, GP II: positive control (LPS group), GP III: standard (dexamethasone, 2 mg/kg b.wt), GP IV and V: DCM-F (100 mg/kg), and DEM-F (200 mg/kg), respectively. DCM-F at a dose of 200 mg/kg suppressed the ability of LPS to increase the levels of nitric oxide synthase (iNOS), NO, tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6), as measured by ELISA. In addition, the expression of cyclooxygenase-2 (COX-2) was reduced (determined by immunohistochemistry) and the level of malondialdehyde (MDA) was decreased while that of catalase was restored to the normal values. Furthermore, the histopathological scores of inflammation induced by LPS were reduced. Twenty-two compounds were tentatively identified in DCM-F using LC/ESI-QToF with iridoids, phenolic derivatives and flavonoids as major constituents. Identified compounds were subjected to two different molecular docking processes against iNOS and prostaglandin E synthase-1 target receptors. Notably, protoplumericin A and 13-O-coumaroyl plumeride were the most promising members compared to the co-crystallized inhibitor in each case. These findings suggested that DCM-F attenuates the LPS-induced ALI in experimental animals through its anti-inflammatory and antioxidant potential.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Mice , Animals , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Plant Extracts/therapeutic use , NF-kappa B/metabolism , Inflammation/metabolism , Macrophages , Anti-Inflammatory Agents/therapeutic use , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Nitric Oxide Synthase/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism
11.
Cureus ; 15(1): e33383, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36751254

ABSTRACT

Background  Maintaining one's sense of self requires having healthy teeth. A person's physical well-being is greatly impacted by their dental health. They are intimately related, and the socioeconomic situation of the individual largely determines how teeth are maintained. As a result, tooth loss causes injury to the stomatognathic system as well as the masticatory function. Morale is negatively impacted by psychological discomfort as well as the reduction in general quality of life brought on by tooth loss. Objectives  The purpose of this study was to assess the awareness of patients about various dental prosthetic rehabilitative procedures in Saudi Arabia, their preference(s) regarding the choice of treatment, and the motivating factors that drive them to avail of dental prosthetic rehabilitative treatment. Methods  After randomly selecting 600 individuals for the purpose of our investigation, a nine-variable questionnaire was framed by investigators to record the responses of those who consented to participate in our study. Results  Only 68.3% of the respondents were found to be aware of the several prosthodontic replacement choices. As mentioned by the majority of the respondents, the cost element was the biggest drawback for replacement. The benefits of choosing fixed partial dentures (FPD) or dental implants were judged to be aesthetics (41.1%) and the feel of one's own teeth (40.1%). Conclusion Only 68.3% of respondents reported knowing about the several prosthodontic replacement choices. The cost aspect was cited by 348 respondents as the biggest drawback to replacement. The perceived benefits of choosing FPD or dental implants were deemed to be aesthetics (41.1%) and the feel of one's own teeth (40.1%). We believe that patients' health and quality of life can be improved by raising awareness about and changing patients' attitudes toward the most cutting-edge treatment options that are readily available. This can be done by educating people about the drawbacks of delaying the replacement of missing teeth and other treatment options.

12.
Inflammopharmacology ; 31(3): 1437-1447, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36820943

ABSTRACT

Acute lung injury (ALI) is a life-threatening condition usually associated with poor therapeutic outcomes and a high mortality rate. Since 2019, the situation has worsened due to the COVID-19 pandemic. ALI had approximately 40% of deaths before COVID-19, mainly due to the dysfunction of the blood-gas barrier that led to lung edema, failure of gas exchange, and dyspnea. Many strategies have been taken to mitigate the disease condition, such as diuretics, surfactants, antioxidants, glucocorticoids, heparin, and ventilators with concomitant sedatives. However, until now, there is no available effective therapy for ALI. Thus, we are presenting a new compound termed Arabincoside B (AR-B), recently isolated from Caralluma arabica, to be tested in such conditions. For that, the lipopolysaccharide (LPS) mice model was used to investigate the capability of the AR-B compound to control the ALI compared to standard dexamethasone. The results showed that AR-B had a significant effect on retrieving ALI. A further mechanistic study carried out in the serum, lung homogenate, histological, and immunohistochemistry sections revealed that the AR-B either in 50 mg/kg or 75 mg/kg dose inhibited pro-inflammatory cytokines such as IL-6, IL-13, NF-κB, TNFα, and NO and stimulated regulatory cytokines IL-10. Moreover, AR-B showed a considerable potential to protect the pulmonary tissue against oxidative stress by decreasing MDA and increasing catalase and Nrf2. Also, the AR-B exhibited an anti-apoptotic effect on the lung epithelium, confirmed by reducing COX and BAX expression and upregulating Bcl-2 expression. These results pave its clinical application for ALI.


Subject(s)
Acute Lung Injury , Apocynaceae , COVID-19 , Pneumonia , Mice , Animals , Humans , Lipopolysaccharides/pharmacology , Signal Transduction , Pandemics , COVID-19/metabolism , Lung , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , NF-kappa B/metabolism , Pneumonia/metabolism , Cytokines/metabolism , Apocynaceae/metabolism
13.
ACS Chem Neurosci ; 14(3): 359-369, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36689351

ABSTRACT

Aluminum oxide nanoparticles (Al2O3 NPs) have been widely used in vaccine manufacture, food additives, human care products, and cosmetics. However, they also have adverse effects on different organs, including the liver, kidneys, and testes. Melatonin is a potent antioxidant, particularly against metals by forming melatonin-metal complexes. The present study aimed to investigate the protective effects of melatonin against Al2O3 NP-induced toxicity in the rat brain. Forty adult male Wistar rats were allocated to four groups: the untreated control (received standard diet and distilled water), Al2O3 NP-treated (received 30 mg/kg body weight Al2O3 NPs), melatonin and Al2O3 NP-treated (received 30 mg/kg body weight Al2O3 NPs + 10 mg/kg body weight melatonin), and melatonin-treated (received 10 mg/kg body weight melatonin) groups. All treatments were by oral gavages and administered daily for 28 days. Afterward, the rats were sacrificed, and samples from various brain regions (cerebrum, cerebellum, and hippocampus) were subjected to biochemical, histopathological, and immunohistochemical analyses. Al2O3 NPs substantially increased malondialdehyde, ß-amyloid 1-42 peptide, acetylcholinesterase, and ß-secretase-1 expression, whereas they markedly decreased glutathione levels. Furthermore, Al2O3 NPs induced severe histopathological alterations, including vacuolation of the neuropil, enlarged pericellular and perivascular spaces, vascular congestion, neuronal degeneration, and pyknosis. Al2O3 NP treatment also resulted in an intense positive caspase-3 immunostaining. Conversely, the administration of melatonin alleviated the adverse effects induced by Al2O3 NPs. Therefore, melatonin can diminish the neurotoxic effects induced by Al2O3 NPs.


Subject(s)
Melatonin , Nanoparticles , Humans , Male , Rats , Animals , Aluminum Oxide/toxicity , Rats, Wistar , Melatonin/pharmacology , Acetylcholinesterase/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Cerebellum/metabolism , Hippocampus/metabolism , Body Weight , Oxidative Stress
14.
Int J Environ Health Res ; 33(10): 993-1009, 2023 Oct.
Article in English | MEDLINE | ID: mdl-35451911

ABSTRACT

Bisphenol A (BPA) used in plastic industry. This study evaluate ameliorative effect of vitamin E and selenium in combating BPA toxicity in spinal cord (SC) and submandibular glands (SMGs). Thirty rats divided into three groups [Group I, controls; Group II, BPA orally (25 mg/kg) three times a week, 60 days; Group III, BPA (25 mg/kg) plus vitamin E and selenium in water (1 ml/L/day)]. By histopathological, immunohistochemical, and biochemical investigations. Bisphenol A group showed degenerative alterations. SC gray matter showed pyknotic nuclei and white matter revealed neuropil degeneration. Myelinated fibers showed dispersed myelin. SMGs, exhibited vacuolated cytoplasm in acinar cells. Intense glial fibrillary acidic protein in SC and strong proliferating cell nuclear antigen in acinar and ductal cell nuclei of SMGs. Malondialdehyde elevated in SC and catalase decreased in SMG. Group III, SC and SMG revealed partial recovery. Vitamin E and selenium displayed protective effects against BPA toxicity in SC and SMGs.


BPA had a neurotoxic effect on spinal cord of albino rats.BPA causing degeneration of nerve fibers with axonal disappearance of white matter.BPA caused GFAP proliferation and high MDA level in spinal cord.BPA caused degeneration of submandibular gland's acinar cells and duct system.Both vitamin E and Selenium had a protective effect against BPA toxicity.


Subject(s)
Selenium , Vitamin E , Rats , Male , Animals , Vitamin E/pharmacology , Selenium/pharmacology , Submandibular Gland , Benzhydryl Compounds/toxicity , Spinal Cord , Oxidative Stress
15.
Expert Opin Drug Deliv ; 20(1): 159-174, 2023 01.
Article in English | MEDLINE | ID: mdl-36446395

ABSTRACT

OBJECTIVES: The present study aims to formulate and evaluate the efficacy of chrysin-loaded nanoemulsion (CH NE) against lithium/pilocarpine-induced epilepsy in rats, as well as, elucidate its effect on main epilepsy pathogenesis cornerstones; neuronal hyperactivity, oxidative stress, and neuroinflammation. METHODS: NEs were characterized by droplet size, zeta potential, pH, in vitro release, accelerated and long-term stability studies. Anti-convulsant efficacy of the optimized formula and underlying mechanisms involved were assessed and compared to that from CH suspension given orally at a 30 folds higher dose. RESULTS: Optimized formula displayed a droplet size of 48.09 ± 0.83 nm, PDI 0.25 ± 0.011, sustained release, and good stability. CH treatment reduced seizures scoring, corrected behavioral and histological changes induced by Li/Pilo. Moreover, CH restored neurotransmitters balance and oxidative stress markers levels. Besides, CH induced microglia polarization from M1 to M2 hindering inflammation induced by Li/Pilo. Also, CH restored energy metabolism homeostasis via regulating protein expression of AMPK/SIRT-1/PGC-1α pathway markers. CH NE formulation was found to significantly enhance drug delivery to rats' hippocampus compared to CH suspension. CONCLUSION: Our findings prove the therapeutic efficacy of CH NE at a lower dose which could be a potential brain targeting platform to combat epilepsy.


Subject(s)
Epilepsy , Status Epilepticus , Rats , Animals , Pilocarpine/toxicity , Microglia/pathology , Lithium/adverse effects , AMP-Activated Protein Kinases/pharmacology , AMP-Activated Protein Kinases/therapeutic use , Status Epilepticus/chemically induced , Status Epilepticus/drug therapy , Status Epilepticus/pathology , Epilepsy/drug therapy , Oxidative Stress
16.
Environ Sci Pollut Res Int ; 29(55): 83797-83809, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35771327

ABSTRACT

Atrazine (ATZ) is a widely used herbicide; however, it has deleterious effects. The current study aimed to investigate the potential toxic effect of ATZ as a neuroendocrine disruptor on the cerebellum and thyroid gland and on the liver as a detoxifying organ. We examined the ability of ATZ to induce oxidative stress and subsequent apoptosis in these organs. Moreover, we investigated the potential protective effect of Acacia nilotica, because of its potent antioxidant activity. Thus, our study was carried out on 40 adult male albino rats that were divided equally into 4 groups (10 rats/each group). The first group received distilled water, while the second group received ATZ dissolved in corn oil at 200 mg/kg body weight/day by stomach gavage. The third group was treated orally by ATZ (200 mg/kg body weight/day) plus Acacia nilotica (400 mg/kg/day). Group IV received Acacia nilotica only at a dose (400 mg/kg/day). After successive 30 days of the experiment, blood and tissue samples were collected from all groups. Our findings revealed the ability of ATZ to induce toxic effects was observed microscopically in the form of degenerated neurons and vacuolated neuropil of the cerebellum, degenerated hepatocytes, and vacuolation of the follicular cells of the thyroid gland. Furthermore, ATZ significantly elevated AST, ALT, and ALP serum levels and TB concentration, while decreased GSH. DNA fragmentation% and activated caspase-3 expression significantly increased after ATZ exposure. Interestingly, Acacia nilotica administration was able to partially protect the examined organs against the toxic effect of ATZ exposure.


Subject(s)
Acacia , Atrazine , Rats , Animals , Acacia/chemistry , Atrazine/toxicity , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress , Body Weight
17.
RSC Adv ; 12(6): 3476-3493, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35425386

ABSTRACT

This study was conducted to explore the potential cardioprotective and anti-depressive effects of dichloromethane (DCM) fractions of Morus macroura leaves (L) and stem branches (S) on post-myocardial infarction (MI) depression induced by isoprenaline (ISO) in rats in relation to their metabolites. The study was propped with a UPLC-ESI-MS/MS profiling and chromatographic isolation of the secondary metabolites. Column chromatography revealed the isolation of lupeol palmitate (6) that was isolated for the first time from nature with eight known compounds. In addition, more than forty metabolites belonging, mainly to flavonoids, and anthocyanins groups were identified. The rats were injected with ISO (85 mg kg-1, s.c) in the first two days, followed by the administration of M. macroura DCM-L and DCM-S fractions (200 mg kg-1 p.o) for 19 days. Compared with the ISO exposed rats, the treated rats displayed a reduction in cardiac biomarkers (LDH and CKMB), anxiety, and depressive-like behaviour associated with an increase in the brain defense system (SOD and GSH), neuronal cell energy, GABA, serotonin, and dopamine, confirmed by histopathological investigations. In conclusion, DCM-L and DCM-S fractions' cardioprotective and anti-depressive activities are attributed to their metabolite profile. Therefore, they could serve as a potential agent in amending post-MI depression.

18.
Eur J Dent ; 16(4): 895-900, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35279817

ABSTRACT

OBJECTIVES: Esthetics have become a primary influencing factor for patient satisfaction, thus dental restorations shade selection is critical, as it should closely resemble a healthy tooth. During various dental procedures, teeth are subjected to dehydration. The commonly used shade guides are being replaced with electronic color measurement devices for more precise measurements. The aim of this study was to evaluate the effect of dehydration time on tooth color measurement using a spectrophotometer. MATERIALS AND METHODS: Study sample is represented by 20 extracted caries-free maxillary central incisors, which were obtained from several private clinics in Riyadh, Saudi Arabia, and soaked in normal saline for 24 hours. The VITA Easyshade Advance 4.0 spectrophotometer was used to measure the color at different areas of the tooth (cervical, middle, and incisal thirds) at three time intervals (baseline, after 1 hour of dehydration, and after 2 hours of dehydration). STATISTICAL ANALYSIS: All color coordinates across the different areas of each tooth at the incisal, middle, and cervical thirds descriptive statistics of mean (standard deviation) values were calculated and were compared at the different time intervals at baseline, after 1 hour of dehydration, and after 2 hours of dehydration. Finally, the color change value ∆E was calculated using the formula ∆E*ab = √ (L2∗ - L1∗)2 + (a2∗ - a1∗)2 + (b2∗ - b1∗)2. RESULTS: The color difference ∆E showed statistically significant changes at different time intervals: at baseline, after 1 hour of dehydration, and after 2 hours of dehydration (p < 0.001). Hue had statistically significant changes between 1 hour and 2 hours of dehydration (p = 0.002). Chroma value also showed statistically significant changes (p < 0.001) in all time intervals. CONCLUSION: By using VITA Easyshade Advance 4.0 spectrophotometer, it was indicated that the tooth color measurements were significantly affected by dehydration time, and tooth shade appeared lighter due to changes in the refractive indices as air replaces the interprism spaces within the enamel. Tooth color measurements for shade selection should be taken as soon as possible to limit dehydration effect and ensure a more accurate shade selection for an enhanced esthetic result.

19.
Arch Pharm (Weinheim) ; 355(6): e2100327, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35285986

ABSTRACT

Two new series of coumarin and benzofuran derivatives were designed, synthesized, and assessed for their in vitro and in vivo antitumor activities against breast cancer. Compounds 8, 9, 14, 15, and 17 exhibited the best antiproliferative activities (IC50 : 0.07-2.94 µM) against the MCF-7 cell line, compared with lapatinib (IC50 : 4.69 µM). Compound 14, with the most potent cytotoxic activity against MCF-7 cells, was capable of enhancing preG1 apoptosis and triggering cell cycle arrest at the G2/M phase. The kinase inhibitory activity of compound 14 against a panel of 22 kinases was examined to reveal multikinase inhibition within -39% to -97%. Furthermore, compound 14 exhibited potent in vivo Ehrlich (mammary adenocarcinoma) tumor regression, positive caspase-3, and negative EGFR immunoreaction, and was capable of elevating the catalase level. The physicochemical properties and pharmacokinetic parameters of compound 14 were investigated in silico for its druglikeness.


Subject(s)
Antineoplastic Agents , Benzofurans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis , Benzofurans/chemistry , Benzofurans/pharmacology , Cell Line, Tumor , Cell Proliferation , Coumarins/pharmacology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship
20.
Molecules ; 27(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35056687

ABSTRACT

Foods with medical value have been proven to be beneficial, and they are extensively employed since they integrate two essential elements: food and medication. Accordingly, diabetic patients can benefit from papaya because the fruit is low in sugar and high in antioxidants. An RP-HPLC method was designed for studying the pharmacokinetics of metformin (MET) when concurrently administered with papaya extract. A mobile phase of 0.5 mM of KH2PO4 solution and methanol (65:35, v/v), pH = 5 ± 0.2 using aqueous phosphoric acid and NaOH, and guaifenesin (GUF) were used as an internal standard. To perform non-compartmental pharmacokinetic analysis, the Pharmacokinetic program (PK Solver) was used. The method's greenness was analyzed using two tools: the Analytical GREEnness calculator and the RGB additive color model. Taking papaya with MET improved the rate of absorption substantially (time for reaching maximum concentration (Tmax) significantly decreased by 75% while maximum plasma concentration (Cmax) increased by 7.33%). The extent of absorption reduced by 22.90%. Furthermore, the amount of medication distributed increased (30.83 L for MET concurrently used with papaya extract versus 24.25 L for MET used alone) and the clearance rate rose by roughly 13.50%. The results of the greenness assessment indicated that the method is environmentally friendly. Taking papaya with MET changed the pharmacokinetics of the drug dramatically. Hence, this combination will be particularly effective in maintaining quick blood glucose control.


Subject(s)
Metformin
SELECTION OF CITATIONS
SEARCH DETAIL
...