Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 164(2-3): 1130-6, 2009 May 30.
Article in English | MEDLINE | ID: mdl-19022570

ABSTRACT

To increase their capacity to adsorb heavy metals, activated carbons were impregnated with the anionic surfactants sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), or dioctyl sulfosuccinate sodium (DSS). Surfactant-impregnated activated carbons removed Cd(II) at up to 0.198 mmol g(-1), which was more than an order of magnitude better than the Cd(II) removal performance of activated carbon without surfactant (i.e., 0.016 mmol g(-1)) even at optimal pH (i.e., pH 6). The capacity of the activated carbon to adsorb Cd(II) increased in proportion to the quantity of surfactant with which they were impregnated. The kinetics of the adsorption of Cd(II) onto the surfactant-impregnated activated carbon was best described by a pseudo-second-order model, and was described better by the Freundlich adsorption isotherm than by the Langmuir isotherm. The surface charge of activated carbon was negative in all pH ranges tested (2-6). These results indicate that surface modification with anionic surfactant could be used to significantly enhance the capacity of activated carbon to adsorb cations.


Subject(s)
Charcoal/chemistry , Metals, Heavy/isolation & purification , Surface-Active Agents/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Anions , Hydrogen-Ion Concentration , Kinetics , Solutions , Water Purification/methods
2.
J Hazard Mater ; 160(1): 13-9, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18384951

ABSTRACT

The performances of various soil washing processes, including surfactant recovery by selective adsorption, were evaluated using a mathematical model for partitioning a target compound and surfactant in water/sorbent system. Phenanthrene was selected as a representative hazardous organic compound and Triton X-100 as a surfactant. Two activated carbons that differed in size (Darco 20-40 mesh and >100 mesh sizes) were used in adsorption experiments. The adsorption isotherms of the chemicals were used in model simulations for various washing scenarios. The optimal process conditions were suggested to minimize the dosage of activated carbon and surfactant and the number of washings. We estimated that the requirement of surfactant could be reduced to 33% of surfactant requirements (from 265 to 86.6g) with a reuse step using 9.1g activated carbon (>100 mesh) to achieve 90% removal of phenanthrene (initially 100mg kg-soil(-1)) with a water/soil ratio of 10.


Subject(s)
Carbon/chemistry , Environmental Restoration and Remediation/methods , Soil/analysis , Surface-Active Agents/chemistry , Adsorption , Algorithms , Models, Statistical , Polycyclic Aromatic Hydrocarbons/analysis , Solubility , Thermodynamics
3.
Chemosphere ; 69(11): 1681-8, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17658582

ABSTRACT

Selective adsorption of a hazardous hydrophobic organic compound (HOC) by activated carbon as a means of recovering surfactants after a soil washing process was investigated. As a model system, phenanthrene was selected as a representative HOC and Triton X-100 as a nonionic surfactant. Three activated carbons that differed in size (Darco 20-40 (D20), 12-20 (D12) and 4-12 (D4) mesh sizes) were used in adsorption experiments. Adsorption of surfactant onto activated carbon showed a constant maximum above the critical micelle concentration, which were 0.30, 0.23, 0.15 g g(-1) for D20, D12, and D4, respectively. Selectivity for phenanthrene to Triton X-100 was much higher than 1 over a wide range of activated carbon doses (0-6 g l(-1)) and initial phenanthrene concentrations (10-110 mg l(-1)). Selectivity generally increased with decreasing particle size, increasing activated carbon dose, and decreasing initial concentration of phenanthrene. The highest selectivity was 74.9, 57.3, and 38.3 for D20, D12, and D4, respectively, at the initial conditions of 10 mg l(-1) phenanthrene, 5 g l(-1) Triton X-100 and 1g l(-1) activated carbon. In the case of D20 at the same conditions, 86.5% of the initial phenanthrene was removed by sorption and 93.6% of the initial Triton X-100 remained in the solution following the selective adsorption process. The results suggest that the selective adsorption by activated carbon is a good alternative for surfactant recovery in a soil washing process.


Subject(s)
Charcoal/chemistry , Hazardous Substances/analysis , Phenanthrenes/analysis , Soil Pollutants/analysis , Surface-Active Agents/chemistry , Adsorption , Environmental Restoration and Remediation , Particle Size , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL