Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Eng ; 17(1): 51, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550751

ABSTRACT

Microfluidic devices have emerged as powerful tools for cell-based experiments, offering a controlled microenvironment that mimic the conditions within the body. Numerous cell experiment studies have successfully utilized microfluidic channels to achieve various new scientific discoveries. However, it has been often overlooked that undesired and unnoticed propagation of cellular molecules in such bio-microfluidic channel systems can have a negative impact on the experimental results. Thus, more careful designing is required to minimize such unwanted issues through deeper understanding and careful control of chemically and physically predominant factors at the microscopic scale. In this paper, we introduce a new approach to improve microfluidic channel design, specifically targeting the mitigation of the aforementioned challenges. To minimize the occurrence of undesired cell positioning upstream from the main test section where a concentration gradient field locates, an additional narrow port structure was devised between the microfluidic upstream channel and each inlet reservoir. This port also functioned as a passive lock that hold the flow at rest via fluid-air surface tension, which facilitated manual movement of the device even when cell attachment was not achieved completely. To demonstrate the practicability of the system, we conducted experiments and diffusion simulations on the effect of endocrine disruptors on germ cells. To this end, a bisphenol-A (BPA) concentration gradient was generated in the main channel of the system at BPA concentrations ranging from 120.8 µM to 79.3 µM, and the proliferation of GC-1 cells in the BPA gradient environment was quantitatively evaluated. The features and concepts of the introduced design is to minimize unexpected and ignored error sources, which will be one of the issues to be considered in the development of microfluidic systems to explore extremely delicate cellular phenomena.

2.
Antioxidants (Basel) ; 10(5)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068575

ABSTRACT

We postulated that supplementation of antioxidant or apoptosis inhibitor in post-thaw culture media of spermatogonial stem cells (SSCs) alleviates reactive oxygen species (ROS) generation and apoptosis. Our aim was to develop an effective culture media for improving post-thaw recovery of SSCs. To determine the efficacy of supplementation with hypotaurine (HTU), α-tocopherol (α-TCP), and Z-DEVD-FMK (ZDF), we assessed the relative proliferation rate and SSC functional activity and performed a ROS generation assay, apoptosis assay, and western blotting for determination of the Bax/Bcl-xL ratio, as well as immunocytochemistry and real-time quantitative polymerase chain reaction (RT-qPCR) for SSC characterization. The relative proliferation rates with HTU 400 µM (133.7 ± 3.2%), α-TCP 400 µM (158.9 ± 3.6%), and ZDF 200 µM (133.1 ± 7.6%) supplementation were higher than that in the DMSO control (100 ± 3.6%). ROS generation was reduced with α-TCP 400 µM (0.8-fold) supplementation in comparison with the control (1.0-fold). Early apoptosis and Bax/Bcl-xL were lower with α-TCP 400 µM (2.4 ± 0.4% and 0.5-fold) and ZDF 200 µM (1.8 ± 0.4% and 0.3-fold) supplementation in comparison with the control (5.3 ± 1.4% and 1.0-fold) with normal characterization and functional activity. Supplementation of post-thaw culture media with α-TCP 400 µM and ZDF 200 µM improved post-thaw recovery of frozen SSCs via protection from ROS generation and apoptosis after cryo-thawing.

3.
Biofabrication ; 12(4): 045031, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32975217

ABSTRACT

In vivo cells express their characteristics in three-dimensional (3D) microenvironments via cell-cell interactions through autocrine, contact-dependent, paracrine, and synaptic signaling, often between heterologous cell types. Various in vitro 3D microwell-based culture methods have been proposed to further identify cellular characteristics by recreating cellular environments, typically in the form of spheroids and organoids, thereby realizing contact-based cell-cell interactions. However, in vivo cells generally exhibit multiple cellular interaction modes that have not been completely evaluated using existing microwell-based methods. This has led to a demand for more advanced and comprehensive methods. This study introduces a novel apparatus, the membrane-bottomed microwell (MBM) for non-contact co-cultures and 3D cell cultures. The MBM is a combination of a Transwell and a microwell array; these have previously been utilized to facilitate heterologous cell co-culturing and spheroid 3D cell culturing, respectively. In the Transwell insert, the lower part of the MBM is immersed in the culture media in which the cells are being two-dimensionally (2D) cultured, and the spheroids of the MBM are affected by the 2D cultured cells via the membrane at the bottom of the microwell. Here, we describe the methods for manufacturing the MBM in detail and elucidate the results of simulations of diffusion through the bottom of the membrane. We validate the proposed MBM for the spheroid culture of spermatogonial stem cells (SSCs), which had previously been 2D co-cultured with Sandos inbred mouse (SIM)-derived 6-thioguanine- and ouabain-resistant (STO; a mouse embryonic feeder cell line) feeder cells. The proposed system is shown to facilitate successful SSC spheroid culturing with paracrine signaling of STOs through an apparatus that simplifies both the loading and the evaluation processes; therefore, we believe that our findings will enable a more comprehensive understanding of SSCs and associated phenomena and that our system can be applied to various in vitro cell and tissue experiments.


Subject(s)
Cell Culture Techniques , Feeder Cells , Stem Cells , Animals , Cells, Cultured , Coculture Techniques , Mice
4.
Genes (Basel) ; 11(1)2020 01 14.
Article in English | MEDLINE | ID: mdl-31947640

ABSTRACT

Genomic imprinting in domestic animals contributes to the variance of performance traits. However, research remains to be done on large-scale detection of epigenetic landscape of porcine imprinted loci including the GNAS complex locus. The purpose of this study was to generate porcine parthenogenetic fetuses and comprehensively identify imprinting patterns of the GNAS locus in transcript levels. To this end, both normally fertilized and bimaternal (uniparental) parthenogenetic porcine fetuses were generated, and whole genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) were performed to construct methylome and transcriptome, respectively. Differentially methylated regions (DMRs) between the fetuses were identified through methylome analysis, and parental-origin-specific expression patterns of transcripts were examined with transcriptome. As a result, three major DMRs were identified: paternally methylated Nesp DMR, maternally methylated Nespas-Gnasxl DMR, and maternally methylated Exon1B-Exon1A DMR. Parental-origin-specific expressions of those five DMR-affected transcripts were found, including a novel imprinted transcript, Exon1B, in pigs. In conclusion, using parthenotes, parental-origin-specific imprinting patterns in the porcine GNAS locus was comprehensively identified, and our approach paves the way for the discovery of novel imprinted genes and loci in a genomic context across species.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/genetics , Genomic Imprinting/genetics , Swine/genetics , Animals , Base Sequence/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Epigenome/genetics , Exons/genetics , Fetus , GTP-Binding Protein alpha Subunits, Gs/metabolism , Genome/genetics , Parthenogenesis , Promoter Regions, Genetic/genetics , Sequence Analysis, RNA/methods , Transcriptome/genetics
5.
J Vet Sci ; 18(4): 531-540, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28057907

ABSTRACT

Ribosomal protein L21 (RPL21) is a structural component of the 60S subunit of the eukaryotic ribosome. This protein has an important role in protein synthesis and the occurrence of hereditary diseases. Pig is a common laboratory model, however, to the best of our knowledge, its RPL21 gene has not been cloned to date. In this study, we cloned and identified the full-length sequence of the pig RPL21 gene for the first time. In addition, we examined its expression pattern and function by using overexpression or knockdown approaches. As a result, we obtained a 604 bp segment that contains a 483 bp open reading frame encoding 160 amino acids. The pig RPL21 gene is located in the "+" strand of chromosome 11, which spans 2167 bp from 4199792 to 4201958. Pig RPL21 protein has nine strands and two helices in its secondary structure. Pig RPL21 is predominantly expressed in ovary and lung, at lower levels in kidney, small intestine, and skin, and at the lowest levels in heart and liver. Furthermore, RPL21 expression is closely connected with cell proliferation and cell cycle arrest. The results are intended to provide useful information for the further study of pig RPL21.


Subject(s)
Open Reading Frames , Ribosomal Proteins/genetics , Sus scrofa/genetics , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Female , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomal Proteins/metabolism , Sequence Alignment/veterinary , Sus scrofa/metabolism
6.
Stem Cells Int ; 2016: 1390284, 2016.
Article in English | MEDLINE | ID: mdl-27999597

ABSTRACT

Oct4 is a crucial germ line-specific transcription factor expressed in different pluripotent cells and downregulated in the process of differentiation. There are two conserved enhancers, called the distal enhancer (DE) and proximal enhancer (PE), in the 5' upstream regulatory sequences (URSs) of the mouse Oct4 gene, which were demonstrated to control Oct4 expression independently in embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs). We analyzed the URSs of the pig Oct4 and identified two similar enhancers that were highly consistent with the mouse DE and PE. A dual-fluorescence reporter was later constructed by combining a DE-free-Oct4-promoter-driven EGFP reporter cassette with a PE-free-Oct4-promoter-driven mCherry reporter cassette. Then, it was tested in a mouse ESC-like cell line (F9) and a mouse EpiSC-like cell line (P19) before it is formally used for pig. As a result, a higher red fluorescence was observed in F9 cells, while green fluorescence was primarily detected in P19 cells. This fluorescence expression pattern in the two cell lines was consistent with that in the early naïve pluripotent state and late primed pluripotent state during differentiation of mouse ESCs. Hence, this reporter system will be a convenient tool for screening out ESC-like naïve pluripotent stem cells from other metastable state cells in a heterogenous population.

SELECTION OF CITATIONS
SEARCH DETAIL