Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 710: 149886, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38581953

ABSTRACT

Mdivi-1, Mitochondrial DIVIsion inhibitor 1, has been widely employed in research under the assumption that it exclusively influences mitochondrial fusion, but effects other than mitochondrial dynamics have been underinvestigated. This paper provides transcriptome and DNA methylome-wide analysis for Mdivi-1 treated SH-SY5Y human neuroblastoma cells using RNA sequencing (RNA-seq) and methyl capture sequencing (MC-seq) methods. Gene ontology analysis of RNA sequences revealed that p53 transcriptional gene network and DNA replication initiation-related genes were significantly up and down-regulated, respectively, showing the correlation with the arrest cell cycle in the G1 phase. MC-seq, a powerful sequencing method for capturing DNA methylation status in CpG sites, revealed that although Mdivi-1 does not induce dramatic DNA methylation change, the subtle alterations were concentrated within the CpG island. Integrative analysis of both sequencing data disclosed that the p53 transcriptional network was activated while the Parkinson's disease pathway was halted. Next, we investigated several changes in mitochondria in response to Mdivi-1. Copy number and transcription of mitochondrial DNA were suppressed. ROS levels increased, and elevated ROS triggered mitochondrial retrograde signaling rather than inducing direct DNA damage. In this study, we could better understand the molecular network of Mdivi-1 by analyzing DNA methylation and mRNA transcription in the nucleus and further investigating various changes in mitochondria, providing inspiration for studying nuclear-mitochondrial communications.


Subject(s)
Dynamins , Neuroblastoma , Humans , Dynamins/metabolism , Mitochondrial Dynamics , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/genetics , Quinazolinones/pharmacology
2.
Bone ; 177: 116918, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37739296

ABSTRACT

Recently improved techniques could provide snapshots of chromatin structure generated based on chromatin accessibility. Since chromatin accessibility determines transcriptional potential, it has been attempted in a variety of cell systems. However, there has been no genome-wide analysis of chromatin accessibility for the entire murine osteoclast (OC) differentiation process. We performed an Assay for Transposase-Accessible Chromatin (ATAC)-sequencing (seq) during RANKL-induced OC differentiation and found that global chromatin accessibility decreased, especially early in OC differentiation. The global histone H3K27Ac level, an active histone modification mark, was diminished during OC differentiation by western blot and histone extract experiments. Its genomic enrichment was also reduced based on publicly available H3K27Ac chromatin immunoprecipitation (ChIP)-seq data. ATAC-seq and H3K27Ac ChIP-seq data demonstrated that RANKL induced a less accessible chromatin state during OC differentiation. Restoration of reduced H3K27Ac, presumably representing accessible states upon acetate treatment, suppresses OC differentiation by provoking immune-related gene expression. Subsequential integrative analysis of ATAC-seq, RNA-seq after acetate treatment, and H3K27Ac ChIP-seq reveals that Irf8 and its downstream targets are the most vulnerable to chromatin accessibility changes and acetate supplementation. Taken together, our study generated chromatin accessibility maps during the whole OC differentiation and suggested perturbation of chromatin accessibility might be a potential therapeutic strategy for excessive OC diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...