Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Lett ; 41(4): 657-60, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26872156

ABSTRACT

We report a single-mode 1180 nm distributed Bragg reflector (DBR) laser diode with a high output power of 340 mW. For the fabrication, we employed novel nanoimprint lithography that ensures cost-effective, large-area, conformal patterning and does not require regrowth. The output characteristics exhibited outstanding temperature insensitivity with a power drop of only 30% for an increase of the mount temperature from 20°C to 80°C. The high temperature stability was achieved by using GaInNAs/GaAs quantum wells (QWs), which exhibit improved carrier confinement compared to standard InGaAs/GaAs QWs. The corresponding characteristic temperatures were T0=110 K and T1=160 K. Moreover, we used a large detuning between the peak wavelength of the material gain at room temperature and the lasing wavelength determined by the DBR. In addition to good temperature characteristics, GaInNAs/GaAs QWs exhibit relatively low lattice strain with direct impact on improving the lifetime of laser diodes at this challenging wavelength range. The single-mode laser emission could be tuned by changing the mount temperature (0.1 nm/°C) or the drive current (0.5 pm/mA). The laser showed no degradation in a room-temperature lifetime test at 900 mA drive current. These compact and efficient 1180 nm laser diodes are instrumental for the development of compact frequency-doubled yellow-orange lasers, which have important applications in medicine and spectroscopy.


Subject(s)
Lasers, Semiconductor , Temperature , Optical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL