Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Infect Dis ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39207021

ABSTRACT

BACKGROUND: Noroviruses are an important viral cause of chronic diarrhea in immunocompromised individuals. METHOD: We collected norovirus-positive stool samples (n=448) from immunocompromised patients (n=88) at the National Institutes of Health Clinical Research Center, U.S. from 2010-2022. We assessed clinical characteristics of the cohort, norovirus molecular epidemiology, and infectivity of norovirus specimens in human intestinal enteroids (HIEs) monolayers. RESULTS: Thirty-nine of the 88 patients had sequential stool samples that allowed documentation of chronic norovirus infection with shedding levels ranging from 104 to 1011 genome copies/g of stool. The majority with confirmed chronic norovirus infection in this cohort (32/39, 82%) had clinical evidence of an inborn error of immunity (13 identified monogenic diseases), most with combined immunodeficiency (15 of 32) or common variable immunodeficiency (11 of 32). Noroviruses detected in the cohort were genetically diverse: both Genogroup I (GI.2, GI.3, GI.5, and GI.6) and Genogroup II (GII.1-GII.4, GII.6, GII.7, GII.12, GII.14, and GII.17) genotypes were detected, with GII.4 variants (Osaka, Apeldoorn, Den Haag, New Orleans, and Sydney) predominant (51 of 88, 57.9%). Viruses belonging to the GII.4 Sydney variant group that replicated in HIEs (n=9) showed a higher fold-increase in RNA genome copies during infection compared to others that replicated. CONCLUSIONS: Genetically and biologically diverse noroviruses established chronic infection in individuals with both inborn and acquired immunologic defects enrolled in an NIH surveillance study spanning 12 years, demonstrating the unique nature of each virus and host interaction.

2.
mBio ; : e0217723, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37905910

ABSTRACT

Noroviruses are a major cause of acute gastroenteritis worldwide and can establish chronic infection in immunocompromised individuals. To investigate the mechanisms of norovirus evolution during chronic infection, we selected seven representative patients from a National Institutes of Health study cohort who sustained norovirus infection for periods ranging from 73 to 1,492 days. Six patients shed viruses belonging to a single genotype (GII.2[PNA], GII.4 New Orleans[P4], GII.4 Den Haag[P4], GII.3[P21], GII.6[P7], or GII.14[P7]) over the period examined, while one patient sequentially shed two genotypes (GII.6[P7] followed by GII.4 Sydney[P31]). Norovirus genomes from consecutive stool samples were sequenced at high resolution (>3,300 reads/nucleotide position) using the Illumina platform and subjected to bioinformatics analysis. Norovirus sequences could be resolved into one or more discrete clonal RNA genomes that persisted within these patients over time. Phylogenetic analyses inferred that clonal populations originated from a single founder virus and not by reinfection with community strains. Estimated evolutionary rates of clonal populations during persistent infection were similar to those of noroviruses from acute infection in the global database, suggesting that inherently higher RNA-dependent polymerase error rates were not associated with the ability to persist. The high-resolution analysis of norovirus diversity and evolution at the population level described here should allow a better understanding of adaptive mutations sustained during chronic infection. IMPORTANCE Noroviruses are an important cause of chronic diarrhea in patients with compromised immune systems. Presently, there are no effective therapies to clear the virus, which can persist for years in the intestinal tract. The goal of our study was to develop a better understanding of the norovirus strains that are associated with these long-term infections. With the remarkable diversity of norovirus strains detected in the immunocompromised patient cohort we studied, it appears that most, if not all, noroviruses circulating in nature may have the capacity to establish a chronic infection when a person is unable to mount an effective immune response. Our work is the most comprehensive genetic data set generated to date in which near full-length genomes from noroviruses associated with chronic infection were analyzed by high-resolution next-generation sequencing. Analysis of this data set led to our discovery that certain patients in our cohort were shedding noroviruses that could be subdivided into distinct haplotypes or populations of viruses that were co-evolving independently. The ability to track haplotypes of noroviruses during chronic infection will allow us to fine-tune our understanding of how the virus adapts and maintains itself in the human host, and how selective pressures such as antiviral drugs can affect these distinct populations.

SELECTION OF CITATIONS
SEARCH DETAIL