Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 12462, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37528122

ABSTRACT

Extreme climate events can have a significant negative impact on maize productivity, resulting in food scarcity and socioeconomic losses. Thus, quantifying their effect is needed for developing future adaptation and mitigation strategies, especially for countries relying on maize as a staple crop, such as South Africa. While several studies have analyzed the impact of climate extremes on maize yields in South Africa, little is known on the quantitative contribution of combined extreme events to maize yield variability and the causality link of extreme events. This study uses existing stress indices to investigate temporal and spatial patterns of heatwaves, drought, and extreme precipitation during maize growing season between 1986/87 and 2015/16 for South Africa provinces and at national level and quantifies their contribution to yield variability. A causal discovery algorithm was applied to investigate the causal relationship among extreme events. At the province and national levels, heatwaves and extreme precipitation showed no significant trend. However, drought severity increased in several provinces. The modified Combined Stress Index (CSIm) model showed that the maize yield nationwide was associated with drought events (explaining 25% of maize yield variability). Heatwaves has significant influence on maize yield variability (35%) in Free State. In North West province, the maize yield variability (46%) was sensitive to the combination of drought and extreme precipitation. The causal analysis suggests that the occurrence of heatwaves intensified drought, while a causal link between heatwaves and extreme precipitation was not detected. The presented findings provide a deeper insight into the sensitivity of yield data to climate extremes and serve as a basis for future studies on maize yield anomalies.


Subject(s)
Climate Change , Zea mays , South Africa , Climate , Droughts , Crops, Agricultural
2.
Sci Rep ; 12(1): 12072, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840590

ABSTRACT

Climate change impacts on maize production in South Africa, i.e., interannual yield variabilities, are still not well understood. This study is based on a recently released reanalysis of climate observations (AgERA5), i.e., temperature, precipitation, solar radiation, and wind speed data. The study assesses climate change effects by quantifying the trend of agrometeorological indicators, their correlation with maize yield, and analyzing their spatiotemporal patterns using Empirical Orthogonal Function. Thereby, the main agrometeorological factors that affected yield variability for the last 31 years (1990/91-2020/21 growing season) in major maize production provinces, namely Free State, KwaZulu-Natal, Mpumalanga, and North West are identified. Results show that there was a significant positive trend in temperature that averages 0.03-0.04 °C per year and 0.02-0.04 °C per growing season. There was a decreasing trend in precipitation in Free State with 0.01 mm per year. Solar radiation did not show a significant trend. Wind speed in Free State increased at a rate of 0.01 ms-1 per growing season. Yield variabilities in Free State, Mpumalanga, and North West show a significant positive correlation (r > 0.43) with agrometeorological variables. Yield in KwaZulu-Natal is not influenced by climate factors. The leading mode (50-80% of total variance) of each agrometeorological variable indicates spatially homogenous pattern across the regions. The dipole patterns of the second and the third mode suggest the variabilities of agrometeorological indicators are linked to South Indian high pressure and the warm Agulhas current. The corresponding principal components were mainly associated with strong climate anomalies which are identified as El Niño and La Niña events.


Subject(s)
El Nino-Southern Oscillation , Zea mays , Climate Change , Seasons , South Africa
SELECTION OF CITATIONS
SEARCH DETAIL
...