Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Regul Toxicol Pharmacol ; 145: 105516, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37838348

ABSTRACT

The Quantitative Structure Use Relationship (QSUR) Summit, held on November 2-4, 2022, focused on advancing the development, refinement, and use of QSURs to support chemical substance prioritization and risk assessment and mitigation. QSURs utilize chemical structures to predict the function of a chemical within a formulated product or an industrial process. This presumed function can then be used to develop chemical use categories or other information necessary to refine exposure assessments. The invited expert meeting was attended by 38 scientists from Canada, Finland, France, the UK, and the USA, representing government, business, and academia, with expertise in exposure science, chemical engineering, risk assessment, formulation chemistry, and machine learning. Workshop discussions emphasized the importance of collection and sharing of data and quantification of relative chemical quantities to progress QSUR development. Participants proposed collaborative approaches to address key challenges, including mechanisms for aggregating information while still protecting proprietary product composition and other confidential business information. Discussions also led to proposals for applications beyond exposure and risk modeling, including sustainable formulation discovery. In addition, discussions continue to construct, conduct, and circulate case studies tied to various specific problem formulations in which QSURs supply or derive information on chemical functions, concentrations, and exposures.


Subject(s)
Risk Assessment , Humans , France , Canada
2.
Environ Int ; 170: 107610, 2022 12.
Article in English | MEDLINE | ID: mdl-36356553

ABSTRACT

High-quality and comprehensive exposure-related data are critical for different decision contexts, including environmental and human health monitoring, and chemicals risk assessment and management. However, exposure-related data are currently scattered, frequently of unclear quality and structure, not readily accessible, and stored in various-partly overlapping-data repositories, leading to inefficient and ineffective data usage in Europe and globally. We propose strategic guidance for an integrated European exposure data production and management framework for use in science and policy, building on current and future data analysis and digitalization trends. We map the existing exposure data landscape to requirements for data analytics and repositories across European policies and regulations. We further identify needs and ways forward for improving data generation, sharing, and usage, and translate identified needs into an operational action plan for European and global advancement of exposure data for policies and regulations. Identified key areas of action are to develop consistent exposure data standards and terminology for data production and reporting, increase data transparency and availability, enhance data storage and related infrastructure, boost automation in data management, increase data integration, and advance tools for innovative data analysis. Improving and streamlining exposure data generation and uptake into science and policy is crucial for the European Chemicals Strategy for Sustainability and European Digital Strategy, in line with EU Data policies on data management and interoperability.


Subject(s)
Data Science , Humans , Europe
3.
J Expo Sci Environ Epidemiol ; 32(4): 499-512, 2022 07.
Article in English | MEDLINE | ID: mdl-35918394

ABSTRACT

Exposure models are essential in almost all relevant contexts for exposure science. To address the numerous challenges and gaps that exist, exposure modelling is one of the priority areas of the European Exposure Science Strategy developed by the European Chapter of the International Society of Exposure Science (ISES Europe). A strategy was developed for the priority area of exposure modelling in Europe with four strategic objectives. These objectives are (1) improvement of models and tools, (2) development of new methodologies and support for understudied fields, (3) improvement of model use and (4) regulatory needs for modelling. In a bottom-up approach, exposure modellers from different European countries and institutions who are active in the fields of occupational, population and environmental exposure science pooled their expertise under the umbrella of the ISES Europe Working Group on exposure models. This working group assessed the state-of-the-art of exposure modelling in Europe by developing an inventory of exposure models used in Europe and reviewing the existing literature on pitfalls for exposure modelling, in order to identify crucial modelling-related strategy elements. Decisive actions were defined for ISES Europe stakeholders, including collecting available models and accompanying information in a living document curated and published by ISES Europe, as well as a long-term goal of developing a best-practices handbook. Alongside these actions, recommendations were developed and addressed to stakeholders outside of ISES Europe. Four strategic objectives were identified with an associated action plan and roadmap for the implementation of the European Exposure Science Strategy for exposure modelling. This strategic plan will foster a common understanding of modelling-related methodology, terminology and future research in Europe, and have a broader impact on strategic considerations globally.


Subject(s)
Environmental Exposure , Europe , Humans
4.
J Expo Sci Environ Epidemiol ; 32(4): 513-525, 2022 07.
Article in English | MEDLINE | ID: mdl-34697409

ABSTRACT

BACKGROUND: A scientific framework on exposure science will boost the multiuse of exposure knowledge across EU chemicals-related policies and improve risk assessment, risk management and communication across EU safety, security and sustainability domains. OBJECTIVE: To stimulate public and private actors to align and strengthen the cross-policy adoption of exposure assessment data, methods and tools across EU legislation. METHODS: By mapping and analysing the EU regulatory landscape making use of exposure information, policy and research challenges and key areas of action are identified and translated into opportunities enhancing policy and scientific efficiency. RESULTS: Identified key areas of actions are to develop a common scientific exposure assessment framework, supported by baseline acceptance criteria and a shared knowledge base enhancing exchangeability and acceptability of exposure knowledge within and across EU chemicals-related policies. Furthermore, such framework will improve communication and management across EU chemical safety, security and sustainability policies comprising sourcing, manufacturing and global trade of goods and waste management. In support of building such a common framework and its effective use in policy and industry, exposure science innovation needs to be better embedded along the whole policymaking cycle, and be integrated into companies' safety and sustainability management systems. This will help to systemically improve regulatory risk management practices. SIGNIFICANCE: This paper constitutes an important step towards the implementation of the EU Green Deal and its underlying policy strategies, such as the Chemicals Strategy for Sustainability.


Subject(s)
Policy , Humans , Risk Assessment
5.
J Expo Sci Environ Epidemiol ; 30(6): 917-924, 2020 11.
Article in English | MEDLINE | ID: mdl-31792311

ABSTRACT

Exposure information is a critical element in various regulatory and non-regulatory frameworks in Europe and elsewhere. Exposure science supports to ensure safe environments, reduce human health risks, and foster a sustainable future. However, increasing diversity in regulations and the lack of a professional identity as exposure scientists currently hamper developing the field and uptake into European policy. In response, we discuss trends, and identify three key needs for advancing and harmonizing exposure science and its application in Europe. We provide overarching building blocks and define six long-term activities to address the identified key needs, and to iteratively improve guidelines, tools, data, and education. More specifically, we propose creating European networks to maximize synergies with adjacent fields and identify funding opportunities, building common exposure assessment approaches across regulations, providing tiered education and training programmes, developing an aligned and integrated exposure assessment framework, offering best practices guidance, and launching an exposure information exchange platform. Dedicated working groups will further specify these activities in a consistent action plan. Together, these elements form the foundation for establishing goals and an action roadmap for successfully developing and implementing a 'European Exposure Science Strategy' 2020-2030, which is aligned with advances in science and technology.


Subject(s)
Science , Europe , Humans
6.
Integr Environ Assess Manag ; 13(5): 815-820, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28121063

ABSTRACT

Specific environmental release categories (SPERCs) are an instrument for lower-tier environmental emissions assessments. They support chemical safety assessments under the European Union (EU) regulation Registration, Evaluation, Authorisation, and Restriction of Chemicals. SPERCs have been developed by industry and subjected to regulatory review. Within the framework of the Chemical Safety Report/Exposure Scenario Roadmap, the EU Chemicals Agency (ECHA), the EU Member State authorities, and European industry sector associations collaborate to improve the quality of the SPERCs. Following up on the outcome of ECHA's SPERC Best Practice Project, industry, together with ECHA, developed an updated SPERC factsheet template and guidance on how to fill it out. In addition, industry developed 2 sets of SPERC factsheet examples and the corresponding SPERC background documents. These documents were submitted to a multistakeholder review process. The comments from the review were discussed at a workshop in spring 2016. The workshop participants acknowledged the revised factsheet format including the corresponding guidance, the 2 SPERC factsheets, and the 2 SPERC background documents as best practice examples. The package is expected to support further improvement of the quality of the SPERCs. A common understanding was achieved of the need to match the level of detail of the use conditions description with the risk to be controlled (i.e., the emission intensity and hazard profile of the substances) and with the level of conservatism of SPERC release factors. The complete and transparent documentation of the derivation of the release factors and of their conservatism is conceived as crucial for the credibility of the SPERCs, such that they can be trusted by partners in the chemicals supply chain and by regulators. To that end, background documents will include a dedicated section describing the conservatism of SPERCs. The workshop concluded with an outline of the practical way forward for the improvement of SPERC documentation. Integr Environ Assess Manag 2017;13:815-820. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Chemical Hazard Release/statistics & numerical data , Consensus Development Conferences as Topic , Environmental Exposure/statistics & numerical data , Environmental Monitoring , Environmental Policy , European Union
7.
Integr Environ Assess Manag ; 8(4): 580-5, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22447453

ABSTRACT

In April 2011, experts from industry and authorities met for a workshop to discuss experience and future developments regarding the use of specific environmental release categories (SPERCs) in chemicals safety assessment (CSA) under the European Chemicals Regulation Registration, Evaluation and Authorization of Chemicals (REACH). This article provides a summary of the workshop. It briefly explains what a SPERC is, why SPERCs are needed, where the challenges of the concept are, and what improvements are needed to make SPERCs a useful tool for assessments under REACH.


Subject(s)
Chemical Safety/standards , Environmental Policy/legislation & jurisprudence , Environmental Pollutants/standards , Environmental Pollution/legislation & jurisprudence , Chemical Safety/legislation & jurisprudence , Chemical Safety/methods , Environmental Pollutants/analysis , Environmental Pollution/prevention & control , Europe , European Union , Risk Assessment/legislation & jurisprudence , Risk Assessment/standards
8.
J Expo Sci Environ Epidemiol ; 17 Suppl 1: S7-15, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18000528

ABSTRACT

Under the new REACH system, companies importing, producing and marketing chemical substances will be obliged to register the single substances and to carry out a safety assessment for all identified uses during the life cycle of the substance. This duty will apply to about 10,000 existing substances in the EU market exceeding an annual production or import volume of 10 t per company. If the substance is already known to be dangerous or turns out to be dangerous(1) during the hazard assessment, the registrant is obliged to carry out an exposure assessment and a risk characterisation for all identified uses. The goal of the safety assessment is to define the conditions of use that allow for adequate control of risk with regard to health and safety at the work place, consumer safety and protection of the environment. Once the registrant has established and documented these conditions in the Chemicals Safety Report (CSR), that information is to be communicated down the supply chain by means of the Extended Safety Data Sheet (eSDS). The ultimate aim of the new legislation is to establish duties and mechanisms that systematically prevent or limit exposure to dangerous industrial chemicals. The current paper explains this concept with regard to environmental exposure and highlights the challenges and possible solutions.


Subject(s)
Chemical Industry/legislation & jurisprudence , Conservation of Natural Resources/methods , Environmental Exposure/prevention & control , Environmental Pollution/prevention & control , Risk Management/methods , Conservation of Natural Resources/legislation & jurisprudence , Environmental Exposure/legislation & jurisprudence , Environmental Monitoring/methods , Environmental Pollution/legislation & jurisprudence , European Union , Government Regulation , Humans , Risk Assessment/methods , Risk Management/legislation & jurisprudence
SELECTION OF CITATIONS
SEARCH DETAIL
...