Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 14(2)2022 01 20.
Article in English | MEDLINE | ID: mdl-35215792

ABSTRACT

Vaccinia virus (VACV) belongs to the genus Orthopoxvirus of the family Poxviridae. There are four different forms of infectious virus particles: intracellular mature virus (IMV), intracellular en-veloped virus (IEV), cell-associated enveloped virus (CEV) and extracellular enveloped virus (EEV). The F13 protein occupies the inner side of the CEV- and EEV-membranes and the outer side of the IEV-membranes. It plays an important role in wrapping progress and EEV production. We constructed a human single-chain fragment variable (scFv) library with a diversity of ≥4 × 108 independent colonies using peripheral blood from four vaccinated donors. One anti-F13 scFv was isolated and characterised after three rounds of panning. In Western blotting assays, the scFv 3E2 reacted with the recombinant F13VACV protein with a reduction of binding under denatured and reduced conditions. Two antigenic binding sites (139-GSIHTIKTLGVYSDY-153 and 169-AFNSAKNSWLNL-188) of scFv 3E2 were mapped using a cellulose membrane encompassing 372 15-mere peptides with 12 overlaps covering the whole F13 protein. No neutralisation capa-bilities were observed either in the presence or absence of complement. In conclusion, the con-struction of recombinant immunoglobulin libraries is a promising strategy to isolate specific scFvs to enable the study of the host-pathogen interaction.


Subject(s)
Antibodies, Viral/immunology , Single-Chain Antibodies/immunology , Vaccinia virus/immunology , Amino Acid Sequence , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Epitope Mapping , Gene Library , Humans , Neutralization Tests , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Vaccinia virus/chemistry , Vaccinia virus/genetics
2.
Vaccines (Basel) ; 9(11)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34835240

ABSTRACT

A panel of potent neutralizing antibodies are protective against orthopoxvirus (OPXV) infections. For the development of OPXV-specific recombinant human single-chain antibodies (scFvs), the IgG repertoire of four vaccinated donors was amplified from peripheral B-lymphocytes. The resulting library consisted of ≥4 × 108 independent colonies. The immuno-screening against vaccinia virus (VACV) Elstree revealed a predominant selection of scFv clones specifically binding to the D8 protein. The scFv-1.2.2.H9 was engineered into larger human scFv-Fc-1.2.2.H9 and IgG1-1.2.2.H9 formats to improve the binding affinity and to add effector functions within the human immune response. Similar binding kinetics were calculated for scFv-1.2.2.H9 and scFv-Fc-1.2.2.H9 (1.61 nM and 7.685 nM, respectively), whereas, for IgG1-1.2.2.H9, the Michaelis-Menten kinetics revealed an increased affinity of 43.8 pM. None of the purified recombinant 1.2.2.H9 formats were able to neutralize VACV Elstree in vitro. After addition of 1% human complement, the neutralization of ≥50% of VACV Elstree was achieved with 0.0776 µM scFv-Fc-1.2.2.H9 and 0.01324 µM IgG1-1.2.2.H9, respectively. In an in vivo passive immunization NMRI mouse model, 100 µg purified scFv-1.2.2.H9 and the IgG1-1.2.2.H9 partially protected against the challenge with 4 LD50 VACV Munich 1, as 3/6 mice survived. In contrast, in the scFv-Fc-1.2.2.H9 group, only one mouse survived the challenge.

3.
Viruses ; 11(6)2019 05 29.
Article in English | MEDLINE | ID: mdl-31146446

ABSTRACT

The vaccinia virus (VACV) A27 protein and its homologs, which are found in a large number of members of the genus Orthopoxvirus (OPXV), are targets of viral neutralization by host antibodies. We have mapped six binding sites (epitopes #1A: aa 32-39, #1B: aa 28-33, #1C: aa 26-31, #1D: 28-34, #4: aa 9-14, and #5: aa 68-71) of A27 specific monoclonal antibodies (mAbs) using peptide arrays. MAbs recognizing epitopes #1A-D and #4 neutralized VACV Elstree in a complement dependent way (50% plaque-reduction: 12.5-200 µg/mL). Fusion of VACV at low pH was blocked through inhibition of epitope #1A. To determine the sequence variability of the six antigenic sites, 391 sequences of A27 protein homologs available were compared. Epitopes #4 and #5 were conserved among most of the OPXVs, while the sequential epitope complex #1A-D was more variable and, therefore, responsible for species-specific epitope characteristics. The accurate and reliable mapping of defined epitopes on immuno-protective proteins such as the A27 of VACV enables phylogenetic studies and insights into OPXV evolution as well as to pave the way to the development of safer vaccines and chemical or biological antivirals.


Subject(s)
Antigens, Viral/genetics , Epitopes/immunology , Membrane Proteins/genetics , Vaccinia virus/genetics , Vaccinia/virology , Viral Fusion Proteins/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , Binding Sites, Antibody , Cross Reactions , Epitope Mapping , Epitopes/genetics , Hydrogen-Ion Concentration , Membrane Proteins/immunology , Mutation , Neutralization Tests , Phylogeny , Species Specificity , Vaccinia virus/immunology , Viral Fusion Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...