Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Food Chem X ; 23: 101744, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39257493

ABSTRACT

This study prepared a nanocapsule (NPs) from chitosan (CS) and sodium alginate (ALG) and used them to enhance the stability of blueberry anthocyanins (BA) The optimal NPs was obtained at pH value of 3.25, BA concentration of 0.5 mg/mL and mixing ratio of CS to ALG of 1:1 (W/W). Further, the formation of composite NPs was confirmed by a series of characterization methods. The CS-BA-ALG NPs appeared spherical, smooth, and evenly distributed when observed under an optical microscope and transmission Electron Microscope. The X-ray Diffractometer and Fourier Transform Infrared spectroscopy data proved that electrostatic interaction and hydrogen bonding are dominant forces to form NPs. Thermogravimetric analysis and differential scanning calorimetry results demonstrated that the CS-BA-ALG NPs system significantly improved the thermal stability of anthocyanins. In addition, it was also proved that CS-BA-ALG NPs showed high antioxidant capacity and protection capacity.

2.
Sci Rep ; 14(1): 21750, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39294255

ABSTRACT

For the electric hydrostatic pump unit (EPU), which is a crucial component in the electro hydraulic servo pump control system (EHSPCS), nonlinear flow modelling is a key challenge to achieve high performance operation, especially in position control. For the nonlinear flow of EPUs, simple linearization combined with compensation has become a popular control method recently. However, the control performance is constrained by the reliance on deviation correction. This paper proposes utilizing the Gauss Newton iterative method to investigate the nonlinear flow modeling in the EPU, aiming to obtain the mapping relationship between the load flow and operating parameters in the EPU, thereby directly improving the control performance. A nonlinear flow model is built by utilizing the Gauss Newton iterative method based on test data obtained from various operating conditions, and the mapping relationship is presented accordingly. Experimental studies show that compared to well-established methods, this model exhibits high accuracy and practicality in improving the control performance, particularly in position control of the EPU.

3.
Ultrason Sonochem ; 109: 107024, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39146820

ABSTRACT

Anthocyanins (AC) are vulnerable to degradation when affected by external factors. The present study employed ultrasound-assisted glycosylation of ovalbumin (OVA) and dextran (Dex) to generate conjugate carrier for AC to improve its stability. The results showed that sonication significantly improved the progression of Maillard reaction to OVA. Compared to traditional glycosylation, ultrasound treatment showed a higher degree of grafting, a lower number of free-SH, and smaller particle size and uniform distribution. The SDS-PAGE results indicated covalent interaction. Intrinsic fluorescence (INF), Fourier transform infrared spectroscopy (FTIR), and Circular dichroism (CD) analysis results suggested that ultrasound-assisted glycosylation altered the OVA structure. The scanning electron microscope (SEM) and X-ray diffractometer (XRD) observed that the ultrasound-assisted complex had a more compact and smoother structure and protein unfolding were better. The protein solubility increased significantly after glycosylation. Thermal gravimetric analysis (TGA) and Differential scanning calorimetry (DSC) indicated that the glycosylated conjugates can significantly improve the thermal stability of AC In addition, the AC showed an improved processing and storage stability when conjugated with glycosylated carrier. The glycosylated protein-anthocyanins complex may help provide new ideas and scientific basis for the development of naturally sourced anthocyanins-relevant products in pharmaceutical and food industry applications.


Subject(s)
Anthocyanins , Dextrans , Ovalbumin , Glycosylation , Dextrans/chemistry , Ovalbumin/chemistry , Anthocyanins/chemistry , Ultrasonic Waves , Solubility , Drug Carriers/chemistry
4.
Eur J Hosp Pharm ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897653

ABSTRACT

OBJECTIVES: To establish a clinical application monitoring system for proton pump inhibitors (PPI-MS) and to enhance the detection and intervention of inappropriate PPI use in adult hospitalised patients. METHODS: Natural language processing technology was applied to indication recognition of therapeutic PPI applications and the assessment of admission record recognition for preventive PPI applications. Symptom judgement was based on the tense-negation model and regular expressions. Evidence-based rules for clinical PPI application were embedded for the construction of PPI-MS. A total of 9421 patient records using PPI from July 2022 to July 2023 were analysed to validate the performance of the system and to identify common issues related to inappropriate clinical PPI use. RESULTS: Out of 9421 hospitalised patients detected using PPI, 4736 (50.27%) were used for prophylaxis and the rest for therapeutic use. Among the prophylactic medications, 2274 patients (48.02%) were identified as receiving inappropriate prophylactic PPI. The main reasons were inappropriate prophylaxis without indication. Additionally, 258 cases of inappropriate therapeutic PPI use were identified, mainly involving the use of esomeprazole for peptic ulcers and Zollinger-Ellison syndrome. The efficiency of the PPI rational medication monitoring system, when coupled with human involvement, was 32 times that of manual monitoring. Among cases of inappropriate prophylactic PPI use, 45.29% were due to lack of indications, 28.34% involved inappropriate administration routes, 15.74% were related to inappropriate dosing frequencies and 10.62% were attributed to inappropriate drug selection. There were 933 cases related to the use of antiplatelet and anticoagulant drugs and 708 cases related to the use of non-steroidal anti-inflammatory drugs. The overall accuracy of the PPI-MS system was 88.69%, with a recall rate of 99.33%, and the F1 score was 93.71%. CONCLUSIONS: Establishing a PPI medication monitoring system through natural language processing technology, while ensuring accuracy and recall rates, improves evaluation efficiency and homogeneity. This provides a new solution for timely detection of issues relating to clinical PPI usage.

5.
Food Chem X ; 22: 101457, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38798795

ABSTRACT

The poor thermal stability and emulsifying properties of ovalbumin (OVA) limit its functional performance, but these limitations may be overcome by forming binary complexes. We prepared binary complexes of OVA and fucoidan (FUC) through electrostatic self-assembly and investigated the emulsifying properties of the complex by measuring the particle size, interfacial membrane thickness, zeta potential, and stability of the emulsion prepared with camellia oil and the complex. The OVA-FUC emulsions have a thicker interfacial membrane, lower mobility, higher viscosity, and better stability compared with the OVA emulsions. The emulsion prepared with 1.5 % OVA-FUC remained stable and homogeneous during storage. They tended to become unstable with freeze-thaw, but the oil encapsulated did not leak after coalescence occurred. With the addition of Ca2+, the OVA-FUC emulsion will be converted into a gel state. These findings indicate that OVA-FUC binary complexes can be used to prepare high-performance emulsions with great potential for development.

6.
Sci Rep ; 14(1): 12172, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806544

ABSTRACT

The lubrication performance of a straight-line conjugate internal meshing gear pump is poor under the low-speed, high-pressure operating conditions of the volumetric servo speed control system, and it is difficult to establish a full fluid lubricating oil film between the gear ring and the housing. This leads to significant wear and severe heating between the gear ring and the housing. The lubrication performance of the interface moving pair of the electro-hydraulic actuator pump gear ring housing can be improved by designing a reasonable lubrication bearing structure for the gear ring housing. In this study, a multi-field coupling multi-objective optimization model was established to improve lubrication performance and volumetric efficiency. The whole model consists of the dynamic model of the gear ring components, the fluid lubrication model of the gear ring housing interface, the oil film formation and sealing model considering the influence of temperature, and the multi-objective optimization model. The comprehensive performance of the straight-line conjugate internal meshing gear pump was verified experimentally using a test bench. The results show that the lubrication performance is improved, the mechanical loss is reduced by 31.52%, and the volumetric efficiency is increased by 4.91%.

7.
Int J Antimicrob Agents ; 63(5): 107122, 2024 May.
Article in English | MEDLINE | ID: mdl-38431108

ABSTRACT

BACKGROUND: With increasing antibiotic resistance and regulation, the issue of antibiotic combination has been emphasised. However, antibiotic combination prescribing lacks a rapid identification of feasibility, while its risk of drug interactions is unclear. METHODS: We conducted statistical descriptions on 16 101 antibiotic coprescriptions for inpatients with bacterial infections from 2015 to 2023. By integrating the frequency and effectiveness of prescriptions, we formulated recommendations for the feasibility of antibiotic combinations. Initially, a machine learning algorithm was utilised to optimise grading thresholds and habits for antibiotic combinations. A feedforward neural network (FNN) algorithm was employed to develop antibiotic combination recommendation model (ACRM). To enhance interpretability, we combined sequential methods and DrugBank to explore the correlation between antibiotic combinations and drug interactions. RESULTS: A total of 55 antibiotics, covering 657 empirical clinical antibiotic combinations were used for ACRM construction. Model performance on the test dataset showed AUROCs of 0.589-0.895 for various antibiotic recommendation classes. The ACRM showed satisfactory clinical relevance with 61.54-73.33% prediction accuracy in a new independent retrospective cohort. Antibiotic interaction detection showed that the risk of drug interactions was 29.2% for strongly recommended and 43.5% for not recommended. A positive correlation was identified between the level of clinical recommendation and the risk of drug interactions. CONCLUSIONS: Machine learning modelling of retrospective antibiotic prescriptions habits has the potential to predict antibiotic combination recommendations. The ACRM plays a supporting role in reducing the incidence of drug interactions. Clinicians are encouraged to adopt such systems to improve the management of antibiotic usage and medication safety.


Subject(s)
Anti-Bacterial Agents , Bacterial Infections , Drug Interactions , Machine Learning , Humans , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Retrospective Studies , Drug Therapy, Combination , Algorithms
8.
New Phytol ; 242(3): 1275-1288, 2024 May.
Article in English | MEDLINE | ID: mdl-38426620

ABSTRACT

Rhizosphere microbiomes are pivotal for crop fitness, but the principles underlying microbial assembly during root-soil interactions across soils with different nutrient statuses remain elusive. We examined the microbiomes in the rhizosphere and bulk soils of maize plants grown under six long-term (≥ 29 yr) fertilization experiments in three soil types across middle temperate to subtropical zones. The assembly of rhizosphere microbial communities was primarily driven by deterministic processes. Plant selection interacted with soil types and fertilization regimes to shape the structure and function of rhizosphere microbiomes. Predictive functional profiling showed that, to adapt to nutrient-deficient conditions, maize recruited more rhizobacteria involved in nutrient availability from bulk soil, although these functions were performed by different species. Metagenomic analyses confirmed that the number of significantly enriched Kyoto Encyclopedia of Genes and Genomes Orthology functional categories in the rhizosphere microbial community was significantly higher without fertilization than with fertilization. Notably, some key genes involved in carbon, nitrogen, and phosphorus cycling and purine metabolism were dominantly enriched in the rhizosphere soil without fertilizer input. In conclusion, our results show that maize selects microbes at the root-soil interface based on microbial functional traits beneficial to its own performance, rather than selecting particular species.


Subject(s)
Alphaproteobacteria , Microbiota , Zea mays/microbiology , Soil Microbiology , Soil/chemistry , Rhizosphere , Fertilization
9.
Microorganisms ; 12(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38543625

ABSTRACT

Crop residue decomposition is an important part of the carbon cycle in agricultural ecosystems, and microorganisms are widely recognized as key drivers during this process. However, we still know little about how nitrogen (N) input and rhizosphere effects from the next planting season impact key straw-decomposing microbial communities. Here, we combined amplicon sequencing and DNA-Stable Isotope Probing (DNA-SIP) to explore these effects through a time-series wheat pot experiment with four treatments: 13C-labeled maize straw addition with or without N application (S1N1 and S1N0), and no straw addition with or without N application (S0N1 and S0N0). The results showed that straw addition significantly reduced soil microbial alpha diversity in the early stages. Straw addition changed microbial beta diversity and increased absolute abundance in all stages. Growing plants in straw-amended soil further reduced bacterial alpha diversity, weakened straw-induced changes in beta diversity, and reduced bacterial and fungal absolute abundance in later stages. In contrast, N application could only increase the absolute abundance of soil bacteria and fungi while having little effect on alpha and beta diversity. The SIP-based taxonomic analysis of key straw-decomposing bacteria further indicated that the dominant phyla were Actinobacteria and Proteobacteria, with overrepresented genera belonging to Vicinamibacteraceae and Streptomyces. Key straw-decomposing fungi were dominated by Ascomycota, with overrepresented genera belonging to Penicillium and Aspergillus. N application significantly increased the absolute abundance of key straw-decomposing microorganisms; however, this increase was reduced by the rhizosphere effect. Overall, our study identified key straw-decomposing microorganisms in straw-amended soil and demonstrated that they exhibited opposite responses to N application and the rhizosphere effect.

10.
Heliyon ; 10(5): e26936, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38468920

ABSTRACT

Due to its advantages of having a high power-to-weight ratio and being energy-efficient, the electro-hydraulic servo pump control system (abbreviated as EHSPCS) is frequently employed in the industrial field, such as the electro-hydraulic servo pump control (EHSPC) servomotor for steam turbine valve regulation control. However, the EHSPCS has strong nonlinearity and time-varying features, and the factors that cause system performance degradation are complex. Once a system failure occurs, it may lead to serious accidents, causing serious casualties and economic losses. To address the above issues, a system health assessment method based on LSTM-GRNN-ANN (LGA) deep neural network is proposed in this paper. Firstly, with oil volume gas content, servo motor air-gap flux density, and system leakage coefficient as the health assessment performance indicators, a health assessment performance index system for the EHSPCS is built, Furthermore, the system performance index threshold is set. Secondly, an LGA deep neural network is constructed by combining LSTM, GRNN and ANN, and a deep neural network based on the LGA is used to create an EHSPCS health assessment model. Subsequently, system feature parameter extraction, algorithm design, and parameter debugging are carried out. Finally, an EHSPCS experimental platform is established, typical system failure simulation experiments are designed, and comparative experimental analysis is conducted. The experimental findings demonstrate that the average accuracy of the system health assessment model based on the LGA deep neural network suggested in this paper is 96.37%, compared to 89.84%, 87.99% for LSTM and GRNN, which validates the accuracy of the system health assessment model based on the LGA deep neural network.

11.
Foods ; 13(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38254573

ABSTRACT

The dried Mume Fructus (MF), called Wumei in China, is a unique food with medicinal and edible effects. But its actual production method is outdated with low efficiency and inconsistent quality. This study systematically investigated the influence of moisture content (MC), temperature, and relative humidity (RH) on the browning reaction and quality characteristics of the MF and proposed a continuous processing strategy of the three-stage variable process for MF production based on the precise process control of the temperature and the RH. The production process of MF was divided into three stages: preliminary dehydration, browning, and drying. The results showed that the browning reaction rate and drying efficiency were optimal when the MC of the raw materials was reduced to 50%. In the browning stage, the degree of browning was better, and the antioxidant capacity reached the maximum of 64.38 mg/g DM under a processing temperature of 80 °C and an RH of more than 60%. As the RH increased, the drying rate decreased, and the ash content exhibited an increase. Therefore, the optimal processing parameters for the browning stage were determined to be a temperature of 80 °C and an RH of 60%. In the final drying stage, a temperature of 60 °C coupled with a dehumidification mode proved sufficient to ensure efficient drying without compromising the quality of the MF. This study revealed the reaction mechanism of the rapid browning processing of MF, which has important guiding significance for the rapid processing of browning foods.

12.
Medicine (Baltimore) ; 103(4): e37081, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38277524

ABSTRACT

Generic febuxostat tablets were listed in China's third-round centralized drug procurement program. However, there are no sufficient data available on the use of febuxostat in a real-world setting. This study aimed to compare the efficacy, safety, and cost of selected generic febuxostat with original febuxostat in primary gout and hyperuricemia. Medical records at 3 tertiary hospitals from January 2014 to February 2022 were retrospectively analyzed. Propensity score matching was used to balance the distribution of baseline characteristics. The proportion of patients achieving target serum uric acid (SUA) levels at 12 weeks, the percent changes from baseline in SUA, adverse drug reactions, and the cost of febuxostat therapy were assessed. A total of 221 patients were recruited and 57 pairs of patients were 1:1 matched in the 2 groups. There was no statistically significant difference in the proportion of patients achieving a target SUA levels below 300 µmol/L, the percent changes of SUA decreased from baseline, and the incidence of adverse drug reactions between the 2 groups (all P > .05). The daily febuxostat cost in the generic group were significantly lower than that in original group (P < .05). Based on the results of this study, the clinical efficacy of selected generic febuxostat is comparable to that of original febuxostat for gout with hyperuricemia. No serious adverse reactions were reported in the 2 groups, and generic febuxostat is more economical than the original febuxostat.


Subject(s)
Febuxostat , Gout , Hyperuricemia , Humans , China , Cost-Benefit Analysis , Drug-Related Side Effects and Adverse Reactions , Febuxostat/therapeutic use , Gout/drug therapy , Gout Suppressants/therapeutic use , Hyperuricemia/complications , Retrospective Studies , Tablets , Treatment Outcome , Uric Acid
13.
Int J Biol Macromol ; 257(Pt 1): 128323, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38000599

ABSTRACT

Traditional methods of freezing and thawing may harm the quality of meat products. In order to reduce the negative impact of freezing on surimi products, the magnetic field-assisted freezing method is combined with various curdlan ratios to enhance the gelation characteristics of Penaeus vannamei surimi in this study. The results showed that the magnetic field-assisted freezing technique significantly improved the quality of thawed surimi compared with soaking freezing (SF), whereas the addition of curdlan further improved the gelation properties, and the gel strength, water-holding capacity, textural properties, whiteness, and G' value were significantly improved when its content was increased to 0.6 %. However, excessive amounts of curdlan interfered with protein covalent cross-linking, leading to a decrease in gel quality. Additionally, the addition of magnetic field and curdlan encouraged the shift of the α-helix to the random coil and ß-sheet transition, which stimulated the growth of myofibril molecules, exposed the hydrophobic groups and thiols, improved protein-molecule interactions, and promoted systematic gathering of proteins, leading to the formation of the microstructure of dense and small pores. It also resulted in a drop in water release, an increase in the proton density and a shift in the water condition from free water to more immobile water, which had higher sensory qualities. These effects together resulted in a reduction in thawing and cooking loss to 11.41 % and 13.83 %, respectively. These results also help to clarify the gelation process of shrimp surimi and help to regulate the gelation characteristics of shrimp surimi products.


Subject(s)
Penaeidae , beta-Glucans , Animals , Freezing , Gels/chemistry , Water , Food Handling/methods , Fish Products/analysis , Fish Proteins/chemistry
14.
ACS Appl Mater Interfaces ; 16(1): 1535-1542, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38134330

ABSTRACT

The interfacial problem caused by solid-solid contact is an important issue faced by a solid-state electrolyte (SSE). Herein, a cross-linked composite solid electrolyte (CSE) poly(vinylene carbonate) (PVCA)─ethoxylated trimethylolpropane triacrylate (ETPTA)─Li1.5Al0.5Ge1.5(PO4)3 (LAGP) (PEL) is prepared by in situ thermal polymerization. The ionic conductivity and Li+ transference number (tLi+) of PEL increase significantly due to the addition of LAGP, which can reach 1.011 × 10-4 S cm-1 and 0.451 respectively. The electrochemical stable window is also widened to 4.68 V. Benefiting from the integrated interfacial structure, the assembled coin cell shows low interfacial resistance. The all-solid-state NCM622|PEL|Li coin cell exhibits an initial discharge capacity of 169.7 mA h g-1 and 70% capacity retention over 100 cycles at 0.2 C, demonstrating excellent cycling stability.

15.
Food Chem X ; 20: 100914, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144761

ABSTRACT

Blackberry crude polysaccharides (BCP) was added to chicken breast to inspect the intermolecular interaction with myofibrillar protein (MP). The influence of BCP on the thermal transformation behavior and protein micro-structure during temperature rise period was studied. The results showed that the interaction between BCP and MP was mainly affected by the concentration of BCP and heating temperature. The results of infrared spectrophotometer and nano-particle/zeta potentiometer showed that a BCP-MP complex was generated through hydrogen bond and electrostatic interaction, which could promote the transformation of MP from ß-folding to ß-Angle transformation. The fluorescence spectra showed that the BCP was helped to the spread of protein structure of the MP. Moreover, synchronous thermal analyzer and rheometer results revealed that the BCP increased the enthalpy value and elastic modulus of MP. Scanning electron microscope verified pores inside the BCP-MP complex are more evenly distributed and smaller, which led to the high cross-linking of network and good stability of water distribution for the MP. The addition of BCP enhances the hydrogen bonds and disulfide bonds of MP molecules, which can strengthen the network structure and ultimately improve the performance of meat products.

16.
Front Med ; 17(5): 823-854, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37935945

ABSTRACT

The cell cycle is a complex process that involves DNA replication, protein expression, and cell division. Dysregulation of the cell cycle is associated with various diseases. Cyclin-dependent kinases (CDKs) and their corresponding cyclins are major proteins that regulate the cell cycle. In contrast to inhibition, a new approach called proteolysis-targeting chimeras (PROTACs) and molecular glues can eliminate both enzymatic and scaffold functions of CDKs and cyclins, achieving targeted degradation. The field of PROTACs and molecular glues has developed rapidly in recent years. In this article, we aim to summarize the latest developments of CDKs and cyclin protein degraders. The selectivity, application, validation and the current state of each CDK degrader will be overviewed. Additionally, possible methods are discussed for the development of degraders for CDK members that still lack them. Overall, this article provides a comprehensive summary of the latest advancements in CDK and cyclin protein degraders, which will be helpful for researchers working on this topic.


Subject(s)
Cyclin-Dependent Kinases , Cyclins , Humans , Cell Cycle/physiology , Cell Division , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Cyclins/genetics , Cyclins/metabolism
17.
Food Chem X ; 19: 100820, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37780301

ABSTRACT

The processing of surimi products requires the addition of high levels of salt, which makes it a high-salt food that poses a risk to human health. The search for exogenous additives to reduce the salt content of surimi products while ensuring their quality characteristics is crucial. Therefore, the effect of different species of cellulose on enhancing the quality characteristics of low-salt surimi gels was investigated and the best-modified cellulose was identified. Carboxymethyl cellulose (CMC), hydroxypropyl methylcellulose (HPMC), and microcrystalline cellulose (MCC) were selected for this study to compare with high-salt control and low-salt control. The results showed that cellulose could induce conformational transitions of proteins and promote the formation of an ordered and dense surimi gel network and the minimum porosity of 15.935% was obtained in the MCC-treated group. The cellulose-treated group conferred good textural properties to the surimi gels, significantly improved gel strength and water retention capacity (p < 0.05), and reduced the amount of water lost after cooking treatment (p < 0.05). Low-field NMR results showed that cellulose reduced the release of water, converting more free water to immobile water, thus increasing the water proton density. The higher energy storage modulus G' in the presence of cellulose indicated a more stable surimi gel system dominated by springiness. In summary, cellulose could confer better quality characteristics to low-salt surimi gels and MCC performance was superior to other cellulose species. This study helps the understanding of the mechanism of cellulose-surimi action on the development of high-quality low-salt surimi gels.

18.
Int J Biol Macromol ; 253(Pt 7): 126852, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37703970

ABSTRACT

The purpose of this study was to investigate the effect of Kappa (к)-carrageenan on texture and perception of saltiness of low salt surimi. The low-field nuclear magnetic resonance (LF-NMR) and microstructure results showed that к-carrageenan could promote the formation of more immobilized water in low salt surimi gel, change its matrix structure, and lead to the uneven spatial distribution of sodium, thus enhancing saltiness perception. The rheological properties of surimi showed that к-carrageenan could increase the network strength of low salt surimi gel and improve its thermostability. Furthermore, the low salt surimi gel added with к-carrageenan has lower cooking loss, higher water holding capacity (WHC), gel strength and improved texture properties. Therefore, к-carrageenan has the effects of improving the quality and increasing salt perception of surimi gel. This study provides a new method for reducing salt consumption in food industry.


Subject(s)
Fish Proteins , Food Handling , Carrageenan , Fish Proteins/chemistry , Food Handling/methods , Gels/chemistry , Fish Products/analysis , Sodium Chloride , Water , Perception
19.
Sci Total Environ ; 902: 166092, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37558068

ABSTRACT

Environmental factors (e.g., climate and edaphic factors) indirectly regulate residue decomposition via microbial communities. Microbial ecological clusters (eco-clusters) structured by specific environmental factors have consequences for ecosystem functions. However, less is known about how microbial eco-clusters affect residue decomposition, especially over broad geographic scales. We collected agricultural soils from adjacent pairs of upland and paddy fields along a latitudinal gradient from the cold-temperature zone to the tropical zone, and conducted a microcosm experiment with 13C-labelled maize residue to explore the continental pattern of maize residue-derived 13CO2 (RDC), and whether and how microbial eco-clusters drive and predict RDC. Results showed that RDC decreased with latitude in both upland and paddy fields. Further, we identified 21 well-defined eco-clusters according to microbial environmental preferences, which explained 51.15 % of the spatial variations in RDC. The eco-clusters of high-total annual precipitation (TAP), high-mean annual temperature (MAT), low-pH, and some low-nutrient-associated exerted a positive effect on RDC. These eco-clusters contained many taxa belonging to the Actinobacteriota, Firmicutes, and Sordariomycetes, and their relative abundance decreased with latitude. Upland soils displayed 2.40-fold of RDC over paddy soils. Low-pH and high-organic matter (OM) eco-clusters were found to be the most prominent predictors of RDC in upland and paddy fields, respectively. Finally, we constructed a continental atlas of RDC in both upland and paddy fields based on eco-clusters and high-resolution climate and soil data. Overall, our study provides important evidence that historical environment-shaped microbial eco-clusters can drive and predict residue decomposition, providing new insights into how environmental factors indirectly regulate residue decomposition.


Subject(s)
Microbiota , Zea mays , Soil/chemistry , Agriculture , Bacteria , Soil Microbiology , Carbon
20.
Int J Biol Macromol ; 248: 125899, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37479203

ABSTRACT

In this study, the gel properties of ultrasonic alone, curdlan treatment alone, and the combination of both at low-salt surimi levels were investigated, mainly in terms of textural properties, water holding capacity, water distribution, dynamic rheology, protein secondary structure, microstructure and correlation analysis. The results showed that the springiness, gel strength, water holding capacity and energy storage modulus (G') of the low-salt surimi gels without ultrasonic or curdlan treatment were lower than those of the high-salt concentration surimi gels. Compared with the 1 % low-salt group, the ultrasonic treatment combination with curdlan resulted in a significant improvement (p < 0.05) in the texture, water holding capacity and energy storage modulus (G') of the low-salt surimi at the same salt concentration. The gel strength increased significantly from 3386.360 g·mm to 5457.203 g·mm, but there was no significant improvement in whiteness (p > 0.05). In addition, ultrasonic treatment combined with curdlan promoted the shift of the α-helix to the random coil and the ß-turn angle shift, thus exposing the internal groups, enhancing protein intermolecular interactions, and promoting the orderly aggregation of proteins, resulting in a microstructure of dense, and obtained the lowest porosity of 14.534 %. The present study might be necessary for promoting the high-value use of aquatic surimi products and the development of low-salt foods.


Subject(s)
Food Handling , Ultrasonics , Animals , Food Handling/methods , Fishes , Gels/chemistry , Sodium Chloride , Water/analysis , Fish Products/analysis , Fish Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL