Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 879
Filter
1.
IEEE Trans Cybern ; PP2024 May 07.
Article in English | MEDLINE | ID: mdl-38713577

ABSTRACT

State responses for several classes of linear systems are investigated in this article. The involved systems include state-delayed linear systems, and high-order linear systems. At first, the single-fundamental-matrix-based approach is extended to these systems, and their state responses are expressed by their fundamental matrices (FMs). In addition, the multiple-FMs-based approach is presented for these systems. Based on a group of FMs, the state responses for the considered time-invariant systems are derived. For the considered time-variant systems, their state responses are explicitly expressed by their transition matrices. As an application of the fundamental-matrix-based approach, a stabilizing control law is designed for a class of high-order fully actuated continuous-time linear systems with a single input-delay.

2.
Front Nutr ; 11: 1335538, 2024.
Article in English | MEDLINE | ID: mdl-38562486

ABSTRACT

The Chinese name "Lingzhi" refers to Ganoderma genus, which are increasingly used in the food and medical industries. Ganoderma species are often used interchangeably since the differences in their composition are not known. To find compositional metabolite differences among Ganoderma species, we conducted a widely targeted metabolomics analysis of four commonly used edible and medicinal Ganoderma species based on ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Through pairwise comparisons, we identified 575-764 significant differential metabolites among the species, most of which exhibited large fold differences. We screened and analyzed the composition and functionality of the advantageous metabolites in each species. Ganoderma lingzhi advantageous metabolites were mostly related to amino acids and derivatives, as well as terpenes, G. sinense to terpenes, and G. leucocontextum and G. tsugae to nucleotides and derivatives, alkaloids, and lipids. Network pharmacological analysis showed that SRC, GAPDH, TNF, and AKT1 were the key targets of high-degree advantage metabolites among the four Ganoderma species. Analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes demonstrated that the advantage metabolites in the four Ganoderma species may regulate and participate in signaling pathways associated with diverse cancers, Alzheimer's disease, and diabetes. Our findings contribute to more targeted development of Ganoderma products in the food and medical industries.

4.
Curr Med Sci ; 44(2): 435-440, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561593

ABSTRACT

OBJECTIVE: Hemophilia carriers (HCs), who are heterozygous for mutations in the clotting factor VIII/clotting factor IX gene (F8 or F9), may have a wide range of clotting factor levels, from very low, similar to afflicted males, to the upper limit of normal, and may experience mental health issues. The purpose of this study was to provide genetic information on mothers of hemophilia patients and to understand the clotting factor activity and phenotype of HCs. Additionally, we aimed to investigate the mental health status of HCs in China. METHODS: A total of 127 hemophilia mothers, including 93 hemophilia A (HA) mothers and 34 hemophilia B (HB) mothers, were enrolled in this study. Long distance PCR, multiplex PCR, and Sanger sequencing were used to analyze mutations in F8 or F9. Coagulation factor activity was detected by a one-stage clotting assay. The Symptom Checklist 90 (SCL-90, China/Mandarin version) was given to HCs at the same time to assess their mental health. RESULTS: A total of 90.6% of hemophilia mothers were diagnosed genetically as carriers, with inversion in intron 22 and missense mutations being the most common mutation types in HA and HB carriers, respectively. The median clotting factor level in carriers was 0.74 IU/mL (ranging from 0.09 to 1.74 IU/mL) compared with 1.49 IU/mL (ranging from 0.93 to 1.89 IU/mL) in noncarriers, of which 14.3% of HCs had clotting factor levels of 0.40 IU/mL or below. A total of 53.8% (7/13) of HA carriers with low clotting factor levels (less than 0.50 IU/mL) had a history of bleeding, while none of the HB carriers displayed a bleeding phenotype. The total mean score and the global severity index of the SCL-90 for surveyed HCs were 171.00 (±60.37) and 1.78 (±0.59), respectively. A total of 67.7% of the respondents had psychological symptoms, with obsessive-compulsive disorder being the most prevalent and severe. The pooled estimates of all nine factors were significantly higher than those in the general population (P<0.05). CONCLUSIONS: The detection rate of gene mutations in hemophilia mothers was 90.6%, with a median clotting factor level of 0.74 IU/mL, and 14.3% of HCs had a clotting factor level of 0.40 IU/mL or below. A history of bleeding was present in 41.2% of HCs with low clotting factor levels (less than 0.50 IU/mL). Additionally, given the fragile mental health status of HCs in China, it is critical to develop efficient strategies to improve psychological well-being.


Subject(s)
Hemophilia A , Male , Humans , Hemophilia A/epidemiology , Hemophilia A/genetics , Cross-Sectional Studies , Blood Coagulation Factors , Hemorrhage , Surveys and Questionnaires , Health Surveys
5.
Curr Med Sci ; 44(2): 426-434, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561594

ABSTRACT

OBJECTIVE: Glucose-6-phosphate isomerase (GPI) deficiency is a rare hereditary nonspherocytic hemolytic anemia caused by GPI gene variants. This disorder exhibits wide heterogeneity in its clinical manifestations and molecular characteristics, often posing challenges for precise diagnoses using conventional methods. To this end, this study aimed to identify the novel variants responsible for GPI deficiency in a Chinese family. METHODS: The clinical manifestations of the patient were summarized and analyzed for GPI deficiency phenotype diagnosis. Novel compound heterozygous variants of the GPI gene, c.174C>A (p.Asn58Lys) and c.1538G>T (p.Trp513Leu), were identified using whole-exome and Sanger sequencing. The AlphaFold program and Chimera software were used to analyze the effects of compound heterozygous variants on GPI structure. RESULTS: By characterizing 53 GPI missense/nonsense variants from previous literature and two novel missense variants identified in this study, we found that most variants were located in exons 3, 4, 12, and 18, with a few localized in exons 8, 9, and 14. This study identified novel compound heterozygous variants associated with GPI deficiency. These pathogenic variants disrupt hydrogen bonds formed by highly conserved GPI amino acids. CONCLUSION: Early family-based sequencing analyses, especially for patients with congenital anemia, can help increase diagnostic accuracy for GPI deficiency, improve child healthcare, and enable genetic counseling.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic , Anemia, Hemolytic , Child , Humans , Glucose-6-Phosphate Isomerase/genetics , Glucose-6-Phosphate Isomerase/chemistry , Anemia, Hemolytic/genetics , Anemia, Hemolytic, Congenital Nonspherocytic/diagnosis , Anemia, Hemolytic, Congenital Nonspherocytic/genetics , Mutation, Missense , Exons
6.
Plant Commun ; 5(5): 100879, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38486454

ABSTRACT

Spike architecture influences both grain weight and grain number per spike, which are the two major components of grain yield in bread wheat (Triticum aestivum L.). However, the complex wheat genome and the influence of various environmental factors pose challenges in mapping the causal genes that affect spike traits. Here, we systematically identified genes involved in spike trait formation by integrating information on genomic variation and gene regulatory networks controlling young spike development in wheat. We identified 170 loci that are responsible for variations in spike length, spikelet number per spike, and grain number per spike through genome-wide association study and meta-QTL analyses. We constructed gene regulatory networks for young inflorescences at the double ridge stage and the floret primordium stage, in which the spikelet meristem and the floret meristem are predominant, respectively, by integrating transcriptome, histone modification, chromatin accessibility, eQTL, and protein-protein interactome data. From these networks, we identified 169 hub genes located in 76 of the 170 QTL regions whose polymorphisms are significantly associated with variation in spike traits. The functions of TaZF-B1, VRT-B2, and TaSPL15-A/D in establishment of wheat spike architecture were verified. This study provides valuable molecular resources for understanding spike traits and demonstrates that combining genetic analysis and developmental regulatory networks is a robust approach for dissection of complex traits.


Subject(s)
Gene Regulatory Networks , Genetic Variation , Genome-Wide Association Study , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/growth & development , Quantitative Trait Loci/genetics , Gene Expression Regulation, Plant , Phenotype
7.
Anal Chem ; 96(13): 5331-5339, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38498948

ABSTRACT

At present, there is a lack of sufficiently specific laboratory diagnostic indicators for schizophrenia. Serum homocysteine (Hcy) levels have been found to be related to schizophrenia. Cysteine (Cys) is a demethylation product in the metabolism of Hcy, and they always coexist with highly similar structures in vivo. There are few reports on the use of Cys as a diagnostic biomarker for schizophrenia in collaboration with Hcy, mainly because the rapid, economical, accurate, and high-throughput simultaneous detection of Cys and Hcy in serum is highly challenging. Herein, a click reaction-based surface-enhanced Raman spectroscopy (SERS) sensor was developed for simultaneous and selective detection of Cys and Hcy. Through the efficient and specific CBT-Cys click reaction between the probe containing cyan benzothiazole and Cys/Hcy, the tiny methylene difference between the molecular structures of Cys and Hcy was converted into the difference between the ring skeletons of the corresponding products that could be identified by plasmonic silver nanoparticle enhanced molecular fingerprint spectroscopy to realize discriminative detection. Furthermore, the SERS sensor was successfully applied to the detection in related patient serum samples, and it was found that the combined analysis of Cys and Hcy can improve the diagnostic accuracy of schizophrenia compared to a single indicator.


Subject(s)
Metal Nanoparticles , Schizophrenia , Humans , Cysteine/chemistry , HeLa Cells , Schizophrenia/diagnosis , Fluorescent Dyes/chemistry , Silver , Spectrometry, Fluorescence/methods , Homocysteine , Glutathione/analysis
8.
Int Wound J ; 21(3): e14776, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38494661

ABSTRACT

A meta-analysis was conducted to comprehensively evaluate the impact of cluster nursing interventions on the prevention of pressure ulcers (PUs) in intensive care unit (ICU) patients. Computer searches were performed in databases including Embase, Google Scholar, Cochrane Library, PubMed, Wanfang and China National Knowledge Infrastructure for randomized controlled trials (RCTs) implementing cluster nursing interventions for PUs prevention in ICU patients, with the search period covering the database inception to November 2023. Two researchers independently screened the literature, extracted data and conducted quality assessments. Stata 17.0 software was employed for data analysis. Overall, 17 RCTs involving 1463 ICU patients were included. The analysis showed that compared with conventional nursing, cluster nursing interventions significantly reduced the incidence of PUs (odds ratio: 0.24, 95% confidence intervals [CI]: 0.17-0.34, p < 0.001) and also significantly improved the levels of anxiety (standardized mean difference [SMD]: -1.39, 95% CI: -1.57 to 1.22, p < 0.001) and depression (SMD: -1.64, 95% CI: -2.02 to 1.26, p < 0.001) in ICU patients. This study indicates that the application of cluster nursing interventions in ICU patients can effectively reduce the incidence of PUs, as well as improve patients' anxiety and depression levels, thereby enhancing their quality of life, which is worth clinical promotion and application.


Subject(s)
Pressure Ulcer , Humans , Pressure Ulcer/prevention & control , Pressure Ulcer/epidemiology , Critical Care , Anxiety , Intensive Care Units , Suppuration
9.
Int J Med Sci ; 21(1): 45-60, 2024.
Article in English | MEDLINE | ID: mdl-38164358

ABSTRACT

Hypoxia inducible factor-1(HIF-1), a heterodimeric transcription factor, is composed of two subunits (HIF-1α and HIF-1ß). It is considered as an important transcription factor for regulating oxygen changes in hypoxic environment, which can regulate the expression of various hypoxia-related target genes and play a role in acute and chronic hypoxia pulmonary vascular reactions. In this paper, the function and mechanism of HIF-1a expression and regulation in hypoxic pulmonary hypertension (HPH) were reviewed, and current candidate schemes for treating pulmonary hypertension by using HIF-1a as the target were introduced, so as to provide reference for studying the pathogenesis of HPH and screening effective treatment methods.


Subject(s)
Hypertension, Pulmonary , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/genetics , Pulmonary Artery/metabolism , Hypoxia/drug therapy , Hypoxia/genetics , Hypoxia/complications , Gene Expression Regulation , Oxygen/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
10.
J Orthop Surg Res ; 19(1): 15, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38167031

ABSTRACT

BACKGROUND: Lumbar disc herniation (LDH) is the main clinical cause of low back pain. The pathogenesis of lumbar disc herniation is still uncertain, while it is often accompanied by disc rupture. In order to explore relationship between loading rate and failure mechanics that may lead to lumbar disc herniation, the failure mechanical properties of the intervertebral disc under high rates of loading were analyzed. METHOD: Bend the lumbar motion segment of a healthy sheep by 5° and compress it to the ultimate strength point at a strain rate of 0.008/s, making a damaged sample. Within the normal strain range, the sample is subjected to quasi-static loading and high loading rate at different strain rates. RESULTS: For healthy samples, the stress-strain curve appears collapsed only at high rates of compression; for damaged samples, the stress-strain curves collapse both at quasi-static and high-rate compression. For damaged samples, the strengthening stage becomes significantly shorter as the strain rate increases, indicating that its ability to prevent the destruction is significantly reduced. For damaged intervertebral disc, when subjected to quasi-static or high rates loading until failure, the phenomenon of nucleus pulposus (NP) prolapse occurs, indicating the occurrence of herniation. When subjected to quasi-static loading, the AF moves away from the NP, and inner AF has the greatest displacement; when subjected to high rates loading, the AF moves closer to the NP, and outer AF has the greatest displacement. The Zhu-Wang-Tang (ZWT) nonlinear viscoelastic constitutive model was used to describe the mechanical behavior of the intervertebral disc, and the fitting results were in good agreement with the experimental curve. CONCLUSION: Experimental results show that, both damage and strain rate have a significant effect on the mechanical behavior of the disc fracture. The research work in this article has important theoretical guiding significance for preventing LDH in daily life.


Subject(s)
Intervertebral Disc Displacement , Intervertebral Disc , Animals , Sheep , Intervertebral Disc Displacement/pathology , Lumbar Vertebrae/pathology , Weight-Bearing , Biomechanical Phenomena , Stress, Mechanical , Intervertebral Disc/pathology
11.
Plant Biotechnol J ; 22(3): 698-711, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37929693

ABSTRACT

Flowering time, an important factor in plant adaptability and genetic improvement, is regulated by various genes in tomato (Solanum lycopersicum). In this study, we characterized a tomato mutant, EARLY FLOWERING (EF), that developed flowers much earlier than its parental control. EF is a dominant gain-of-function allele with a T-DNA inserted 139 bp downstream of the stop codon of FANTASTIC FOUR 1/2c (FAF1/2c). The transcript of SlFAF1/2c was at elevated levels in the EF mutant. Overexpressing SlFAF1/2c in tomato plants phenocopied the early flowering trait of the EF mutant. Knocking out SlFAF1/2c in the EF mutant reverted the early flowering phenotype of the mutant to the normal flowering time of the wild-type tomato plants. SlFAF1/2c promoted the floral transition by shortening the vegetative phase rather than by reducing the number of leaves produced before the emergence of the first inflorescence. The COP9 signalosome subunit 5B (CSN5B) was shown to interact with FAF1/2c, and knocking out CSN5B led to an early flowering phenotype in tomato. Interestingly, FAF1/2c was found to reduce the accumulation of the CSN5B protein by reducing its protein stability. These findings imply that FAF1/2c regulates flowering time in tomato by reducing the accumulation and stability of CSN5B, which influences the expression of SINGLE FLOWER TRUSS (SFT), JOINTLESS (J) and UNIFLORA (UF). Thus, a new allele of SlFAF1/2c was discovered and found to regulate flowering time in tomato.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Alleles , Gain of Function Mutation , Mutation , Flowers/genetics , Flowers/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/genetics
12.
Zhongguo Gu Shang ; 36(12): 1142-6, 2023 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-38130222

ABSTRACT

OBJECTIVE: To investigate CT values of cancellous bone in femoral neck in adults over 60 years with proximal femoral fractures. METHODS: From January 2020 to December 2020, a retrospective analysis was performed on 280 subjects aged 60 years or older who underwent bilateral hip CT examination, including 85 males and 195 females, 120 on the left side and 160 on the right side, aged 75 (66, 82) years old. One hundred thirty-six patients with proximal femoral fractures were included in study group and 144 patients without fractures were included in control group. GEOptima CT was used to scan and reconstruct horizontal, coronal and sagittal layers of proximal femur. CT values of cancellous bone in femoral neck were measured and compared between two groups. The relationship between CT values of cancellous bone of femoral neck and proximal femoral fracture was analyzed statistically. RESULTS: In terms of age, fracture group aged 79(73.3, 85.0) years old, non-fracture group aged 69.5 (64.0, 78.8) years old, and had significant difference in age between two groups (P<0.05). In terms of CT value, regional CT value in fracture group was 8.62(-3.62, 27.15) HU, which was lower than that in non-fracture group 34.31(-5.93, 71.74) HU(P<0.05). CT value on coronal view in fracture group was -8.48(-30.96, 17.46) HU, which was lower than that in non-fracture group 40.49(5.55, 80.71) HU (P<0.05). CT value on sagittal view in fracture group was -31.28(-54.91, -5.11) HU, which was lower than that in non-fracture group 7.74(-20.12, 44.54) HU (P<0.05). CT values on horizontal view in fracture group was 0.17(-23.13, 24.60) HU, which was lower than that in non-fracture group 46.40(10.42, 85.18) HU(P<0.05). The mean regional CT values among three planes in the fracture group were lower than those in the non-fracture group. Logistic regression analysis showed coronal CT value was influencing factors of proximal femoral fracture, and it could be written into regression equations that predict probability of fracture. CONCLUSION: In adults aged over 60 years old, CT values of cancellous bone of femoral neck decreased with increasing age. The smaller CT value of cancellous bone of femoral neck, the greater risk of proximal femoral fracture.


Subject(s)
Hip Fractures , Proximal Femoral Fractures , Male , Adult , Female , Humans , Middle Aged , Aged , Aged, 80 and over , Retrospective Studies , Femur Neck , Hip Fractures/diagnostic imaging , Hip Fractures/surgery , Tomography, X-Ray Computed , Bone Density
13.
Sci Rep ; 13(1): 22230, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38097680

ABSTRACT

KRAS is one of the leading mutations reported in colon cancer. However, there are few studies on the application of KRAS related signature in predicting prognosis and drug sensitivity of colon cancer patient. We identified KRAS related differentially expressed genes (DEGs) using The Cancer Genome Atlas (TCGA) database. A signature closely related to overall survival was recognized with Kaplan-Meier survival analysis and univariate cox regression analysis. Then we validated this signature with overall expression score (OE score) algorithm using both scRNA-seq and bulk RNA-seq data. Based on this signature, we performed LASSO cox regression to establish a prognostic model, and corresponding scores were calculated. Differences in genomic alteration, immune microenvironment, drug sensitivity between high- and low-KRD score groups were investigated. A KRAS related signature composed of 80 DEGs in colon cancer were recognized, among which 19 genes were selected to construct a prognostic model. This KRAS related signature was significantly correlated with worse prognosis. Furthermore, patients who scored lower in the prognostic model presented a higher likelihood of responding to chemotherapy, targeted therapy and immunotherapy. Furthermore, among the 19 selected genes in the model, SPINK4 was identified as an independent prognostic biomarker. Further validation in vitro indicated the knockdown of SPINK4 promoted the proliferation and migration of SW48 cells. In conclusion, a novel KRAS related signature was identified and validated based on clinical and genomic information from TCGA and GEO databases. The signature was proved to regulate genomic alteration, immune microenvironment and drug sensitivity in colon cancer, and thus might serve as a predictor for individual prognosis and treatment.


Subject(s)
Colonic Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Prognosis , Biomarkers , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Tumor Microenvironment/genetics , Serine Peptidase Inhibitors, Kazal Type
14.
Nanoscale Adv ; 5(23): 6365-6381, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38024325

ABSTRACT

Owing to its excellent multiplexing ability, high stability, and molecular fingerprint characteristics, Raman encoding has been widely used in security labels for medical safety, jewelry identification and food supervision. Various growing demands have promoted the anti-counterfeiting mode of security labels based on Raman encoding from the classic one that relies on specific patterns to the more secure one that depends on random patterns. As impressive progress has been made in Raman encoding for security labels in recent years, this review attempts to comprehensively cover security labels based on Raman encoding, from label preparation to image verification. For the labels with different anti-counterfeiting modes, the different basic elements they need are summarized, and the role of Raman encoding in different modes is introduced. In addition, security labels based on Raman encoding still have some drawbacks. Therefore, suggestions on how to improve its anti-counterfeiting performance are also discussed, as well as future challenges and prospects.

15.
J Adv Res ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38036217

ABSTRACT

INTRODUCTION: Neurological dysfunction induced by fluoride contamination is still one of major concern worldwide. Recently, neuroprotective roles of silent information regulator 1 (SIRT1) focusing on mitochondrial function have been highlighted. However, what roles SIRT1 exerts and the underlying regulative mechanisms, remain largely uncharacterized in such neurotoxic process of fluoride. OBJECTIVES: We aimed at evaluating the regulatory roles of SIRT1 in human neuroblastoma SH-SY5Y cells and Sprague-Dawley rats with fluoride treatment, and to further identify potential miRNA directly targeting SIRT1. METHODS: Pharmacological suppression of SIRT1 by nicotinamide (NIC) and promotion of SIRT1 by adenovirus (Ad-SIRT1) or resveratrol (RSV) were employed to assess the effects of SIRT1 in mitochondrial dysfunction induced by fluoride. Also, miRNAs profiling and bioinformatic prediction were used to screen the miRNAs which can regulate SIRT1 directly. Further, chemical mimic or inhibitor of chosen miRNA was applied to validate the modulation of chosen miRNA. RESULTS: NIC exacerbated defects in mitochondrial network dynamics and cytochrome c (Cyto C) release-driven apoptosis, contributing to fluoride-induced neuronal death. In contrast, the ameliorative effects were observed when overexpressing SIRT1 by Ad-SIRT1 in vitro or RSV in vivo. More importantly, miR-708-3p targeting SIRT1 directly was identified. And interestingly, moreover, treatment with chemically modified miR-708-3p mimic aggravated, while miR-708-3p inhibitor suppressed fluoride-caused neuronal death. Further confirmedly, overexpressing SIRT1 effectively neutralized miR-708-3p mimic-worsened fluoride neuronal death via correcting mitochondrial network dynamics. On contrary, inhibiting SIRT1 counteracted the promotive effects of miR-708-3p inhibitor against neurotoxic response by fluoride through aggravating abnormal mitochondrial network dynamics. CONCLUSION: These data underscore the functional importance of SIRT1 to mitochondrial network dynamics in neurotoxic process of fluoride and further screen a novel unreported neuronal function of miR-708-3p as an upstream regulator of targeting SIRT1, which has important theoretical implications for a potential therapeutic and preventative target for treatment of neurotoxic progression by fluoride.

16.
Biosens Bioelectron ; 241: 115721, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37788579

ABSTRACT

Herein, the Near-infrared imaging of hepatocellular carcinoma (HCC) and its medicinal treatment was achieved with a γ-glutamyl transpeptidase (GGT)-monitoring fluorescence probe KYZ-GGT which consisted of the typical recognition group γ-glutamyl and the structurally modified signal reporting group hemicyanine-thioxanthene. Compared with the recently reported probes, KYZ-GGT suggested practical and steady capability for monitoring the GGT level in the cellular, xenograft, induced as well as medicinal treatment HCC models. It realized the mitochondrial targeting intracellular imaging to reflect the GGT dynamics in the induction or medicinal treatment of HCC. In the xenograft and induced model mice with multiple factors, KYZ-GGT showed stable performance for visualizing the HCC status. In the medicinal treatment of the long-period-induced HCC model mice verified by the serum indexes and histopathological analysis, KYZ-GGT successfully imaged the medicinal treatment process of HCC with two marketed drugs (Sorafenib and Lenvatinib) respectively, with an applicative penetration depth. The information here was meaningful for investigating effective medicinal strategies for overcoming HCC.


Subject(s)
Biosensing Techniques , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/drug therapy , gamma-Glutamyltransferase/analysis , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Mitochondria/chemistry
17.
Cell Commun Signal ; 21(1): 296, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37864270

ABSTRACT

BACKGROUND: Exosomes are small extracellular vesicles that play important roles in intercellular communication and have potential therapeutic applications in regenerative medicine. Dermal mesenchymal stem cells (DMSCs) are a promising source of exosomes due to their regenerative and immunomodulatory properties. However, the molecular mechanisms regulating exosome secretion from DMSCs are not fully understood. RESULTS: In this study, the role of peroxiredoxin II (Prx II) in regulating exosome secretion from DMSCs and the underlying molecular mechanisms were investigated. It was discovered that depletion of Prx II led to a significant reduction in exosome secretion from DMSCs and an increase in the number of intracellular multivesicular bodies (MVBs), which serve as precursors of exosomes. Mechanistically, Prx II regulates the ISGylation switch that controls MVB degradation and impairs exosome secretion. Specifically, Prx II depletion decreased JNK activity, reduced the expression of the transcription inhibitor Foxo1, and promoted miR-221 expression. Increased miR-221 expression inhibited the STAT signaling pathway, thus downregulating the expression of ISGylation-related genes involved in MVB degradation. Together, these results identify Prx II as a critical regulator of exosome secretion from DMSCs through the ISGylation signaling pathway. CONCLUSIONS: Our findings provide important insights into the molecular mechanisms regulating exosome secretion from DMSCs and highlight the critical role of Prx II in controlling the ISGylation switch that regulates DMSC-exosome secretion. This study has significant implications for developing new therapeutic strategies in regenerative medicine. Video Abstract.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , Exosomes/metabolism , Peroxiredoxins/metabolism , Signal Transduction , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism
18.
Anal Chem ; 95(36): 13537-13545, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37653720

ABSTRACT

While the global COVID-19 pandemic has subsided, microbial aerosol detection has become of high concern. Timely, accurate, and highly sensitive monitoring of microbial aerosols in indoor air is the basis for effective prevention and control of infectious diseases. At present, no commercial equipment or reliable technology can simultaneously control the detection time and limit at 6 h and 102 CFU/mL, respectively. Based on the "safety size range" of particulate matter in the air, we propose a new method of microbial dilation detection, which enables the pathogen to grow rapidly and dramatically into a polymeric microsphere, larger in size than the coexisting aerosol particles. "Like a crane standing among chickens", the microorganism can be easily visualized and counted. Different from routine chemical and biological sensing technologies, this method can achieve absolute counting of microbial particles, and the simple principles can be developed into devices for different life scenarios.


Subject(s)
COVID-19 , Animals , Humans , COVID-19/diagnosis , Chickens , Pandemics , Respiratory Aerosols and Droplets , Particulate Matter
19.
ACS Appl Mater Interfaces ; 15(32): 38956-38964, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37527182

ABSTRACT

As the only commercialized negative current collector, copper (Cu) foil possesses insurmountable applicational advantages as a lithium metal anode (LMA) substrate. However, the successful usage of Cu foil is limited by the poor Li affinity and crystal face variation, which will lead to severe lithium dendrite growth and poor cyclability. Herein, an industrial-popular ion implantation technique is first adopted for Cu surface modification. With the high-energy implantations of N+ plasma, the unique N-rich transition interface can be formed, among which the lithiophilic CuxNy with extended crystal domains can have uniform Cu crystal faces and offer benefit for Li nucleation/deposition; besides, the induced Li3N-rich SEI with high ionic conductivity can support Li-ion transport kinetics, suppress Li dendrite growth, and mitigate the side reaction to improve LMA stability. Consequently, a uniform Li nucleation/deposition is achieved, with obviously enhanced cycling stability and rate capability for the full cells. This technological maturity ion implantation method can be readily extended to any non/metallic ion species, or joint implantation of bi/multiple ions, and other substrates, demonstrating a possible route to surmount the metal anode challenges.

20.
ACS Appl Mater Interfaces ; 15(35): 41697-41707, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37610099

ABSTRACT

Ultra-fine nanoparticles (uf-NPs) embedded in hierarchical porous carbon (HPC) have been proven to possess intriguing properties for various energy storage applications, but effective synthetic control is still lacking. Herein, we present an efficient coordination anchor activation (CAA) strategy for the scalable synthesis and elaborate control of a series of uf-NPs embedded in HPC (Sb@HPC and FeSb2@HPC as examples), which is achieved by taking advantage of the coordination capability of industrial ionic exchange resins. The in situ coordination-anchored uf-NPs and the tailored hierarchical porous HPC enables superior rate capability (533.1 mA h g-1 at 3.30 A g-1 for Sb@HPC, 276.0 mA h g-1 at 5.37 A g-1 for FeSb2@HPC), enhanced cycling stability, and high reversible areal capacity (5.02 mA h cm-2). Our study demonstrates a potentially scalable uf-NP synthesis strategy with industrial raw materials that can be applied to a large variety of energy materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...