Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Res ; 79(14): 3542-3556, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-30858153

ABSTRACT

Accumulating evidence suggests that long noncoding RNA (lncRNA) plays important regulatory roles in cancer biology. However, the involvement of lncRNA in colorectal carcinoma progression remains largely unknown, especially in colorectal carcinoma metastasis. In this study, we investigated the changes in lncRNA expression in colorectal carcinoma and identified a new lncRNA, the antisense transcript of SATB2 (SATB2-AS1), as a key regulator of colorectal carcinoma progression. SATB2-AS1 was frequently downregulated in colorectal carcinoma cells and tissues, and patients whose tumors expressed SATB2-AS1 at low levels had a shorter overall survival and poorer prognosis. Downregulation of SATB2-AS1 significantly promoted cell proliferation, migration, and invasion in vitro and in vivo, demonstrating that it acts as a tumor suppressor in colorectal carcinoma. SATB2-AS1 suppressed colorectal carcinoma progression by serving as a scaffold to recruit p300, whose acetylation of H3K27 and H3K9 at the SATB2 promoter upregulated expression of SATB2, a suppressor of colorectal carcinoma growth and metastasis. SATB2 subsequently recruited HDAC1 to the Snail promoter, repressing Snail transcription and inhibiting epithelial-to-mesenchymal transition. Taken together, these data reveal SATB2-AS1 as a novel regulator of the SATB2-Snail axis whose loss facilitates progression of colorectal carcinoma. SIGNIFICANCE: These data show that the lncRNA SATB2-AS1 mediates epigenetic regulation of SATB2 and Snail expression to suppress colorectal cancer progression.See related commentary by Li, p. 3536.


Subject(s)
Colorectal Neoplasms/genetics , Matrix Attachment Region Binding Proteins , RNA, Long Noncoding , Cell Line, Tumor , Cell Movement , Epigenesis, Genetic , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Transcription Factors
2.
Mol Cancer ; 18(1): 31, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30823921

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNAs) have been indicated to play critical roles in cancer development and progression. LncRNA HOXD cluster antisense RNA1 (HOXD-AS1) has recently been found to be dysregulated in several cancers. However, the expression levels, cellular localization, precise function and mechanism of HOXD-AS1 in colorectal carcinoma (CRC) are largely unknown. METHODS: Real-time PCR and in situ hybridization were used to detect the expression of HOXD-AS1 in CRC tissue samples and cell lines. Gain- and loss-of-function experiments were performed to investigate the biological roles of HOXD-AS1 in CRC cell line. RNA pull down, RNA immunoprecipitation and chromatin immunoprecipitation assays were conducted to investigate the mechanisms underlying the functions of HOXD-AS1 in CRC. RESULTS: We observed that HOXD-AS1 was located in the nucleus of CRC cells and that nuclear HOXD-AS1 was downregulated in most CRC specimens and cell lines. Lower levels of nuclear HOXD-AS1 expression were associated with poor outcomes of CRC patients. HOXD-AS1 downregulation enhanced proliferation and migration of CRC cells in vitro and facilitated CRC tumourigenesis and metastasis in vivo. Mechanistic investigations revealed that HOXD-AS1 could suppress HOXD3 transcription by recruiting PRC2 to induce the accumulation of the repressive marker H3K27me3 at the HOXD3 promoter. Subsequently, HOXD3, as a transcriptional activator, promoted Integrin ß3 transcription, thereby activating the MAPK/AKT signalling pathways. CONCLUSION: Our results reveal a previously unrecognized HOXD-AS1-HOXD3-Integrin ß3 regulatory axis involving in epigenetic and transcriptional regulation constitutes to CRC carcinogenesis and progression.


Subject(s)
Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Integrin beta3/genetics , Mitogen-Activated Protein Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , RNA, Long Noncoding/genetics , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Female , HCT116 Cells , Homeodomain Proteins/metabolism , Humans , Integrin beta3/metabolism , Lymphatic Metastasis , Male , Mice , Middle Aged , Mitogen-Activated Protein Kinases/metabolism , Neoplasm Staging , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Survival Analysis , Transcription Factors , Transcriptional Activation , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL