Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 349: 140856, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38048831

ABSTRACT

Chlorinated paraffins (CPs) can accumulate in sediment and pose risks to ecological systems and human health. The Haihe River Basin is one of the seven main river basins in China and is mainly in the Beijing-Tianjin-Hebei region, which is densely populated and very urbanized. There is therefore a high probability of CP pollution in the Haihe River Basin. However, CP pollution and the environmental risks posed by CPs in the Haihe River are not well understood. In this study, the concentrations of short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) in sediment from six rivers in the Haihe River Basin system were determined using two-dimensional gas chromatography electron-capture negative ionization mass spectrometry. The total SCCP and MCCP concentrations in the sediment samples ranged from 131.83 to 1767.71 and from 89.72 to 1442.82 ng/g dry weight, respectively. The total organic carbon content did not significantly correlate with the CP concentrations. The dominant SCCP congener groups were C10Cl6-7 and the dominant MCCP congener groups were C14Cl7-8. Significant relationships (R = 0.700, p < 0.05) were found between the SCCP and MCCP concentrations, indicating that SCCPs and MCCPs may have similar sources. Hierarchical cluster analysis and principal component analysis indicated that sediment in the study area was contaminated with CPs through the use of the CP-42 and CP-52 commercial products in industrial processes and human activities. The ecological risks posed by CPs were assessed and SCCPs were found to pose high risks in the Yongding New River but moderate risks in the other rivers. MCCPs were found to pose minimal risks to the aquatic environment at most of the sampling points.


Subject(s)
Hydrocarbons, Chlorinated , Paraffin , Humans , Paraffin/analysis , Rivers , Gas Chromatography-Mass Spectrometry , Environmental Monitoring/methods , Hydrocarbons, Chlorinated/analysis , China , Risk Assessment
2.
J Hazard Mater ; 460: 132444, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37660621

ABSTRACT

There is concern about the large amounts of aromatic compounds emitted during coking. Previous studies of coking emissions have been focused on polycyclic aromatic hydrocarbons, dioxin-like compounds, phenols, and volatile organic compounds, but previously unidentified compounds produced during coking may also harm human health. Here, the main pollutants in 69 soil samples from an abandoned coking plant were identified by non-target screening using two-dimensional gas chromatography time-of-flight mass spectrometry. Polycyclic aromatic hydrocarbons, long-chain alkanes, and thiophenes were dominant. High concentrations of thiophenes (benzothiophenes, dibenzothiophenes, and benzonaphtholthiophenes) were found. Quantitative analysis of 12 thiophenes (selected because of their concentrations and detection frequencies) was performed, and the concentrations were 0.03-647 µg/g dry weight, which were extremely high compared with concentrations in soil from uncontaminated sites and other industrial sites. Dibenzothiophene and benzo[b]naphtho[2,1-d]thiophene were dominant, accounting for 69% of the total thiophene concentration. Thiophene profiles in very contaminated areas were different from the profile in coal but similar to the profile in tar. Thiophenes in soil at the coking plant may have been supplied in tar leaks, wastewater, coke oven gases, and exhaust gases. A toxicity assessment indicated a strong likelihood of oxidative stress being induced by exposure to multiple thiophenes at the coking plant. The results suggest that thiophene emissions from coking plants should attract more attention than currently.


Subject(s)
Coke , Polycyclic Aromatic Hydrocarbons , Gases , Soil , Thiophenes/toxicity
3.
Environ Sci Technol ; 57(36): 13366-13374, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37647541

ABSTRACT

Ultraviolet (UV) filters are emerging contaminants that have been found in high concentrations in human tissues. Food intake is generally considered to be the primary route of human exposure to contaminants. In this study, 184 composite food samples, prepared from 4268 individual samples in eight categories collected from 23 Chinese provinces for the sixth Chinese total diet study, were analyzed. The total and median UV filter concentrations in food samples were 1.5-68.3 and 7.9 ng/g wet weight, respectively. The highest median concentrations were found in decreasing order in meat, cereals, and legumes. In total, 15 UV filters were analyzed. 2-Ethylhexyl salicylate, homosalate, and 2-ethylhexyl-4-methoxycinnamate were dominant and made median contributions of 34.1%, 22.6%, and 14.5%, respectively, and 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol contributed the median of 0.03%, of the total UV filter concentrations. The estimated total daily UV filter intake in animal-origin foods and total UV filter concentration in human milk from the same province were significantly correlated (r = 0.44, p < 0.05). Predicted absorption, distribution, metabolism, and elimination properties led to 10 UV filters being prioritized as most likely to be retained in human tissues. The prioritization results and toxicity assessments indicated that octocrylene and 2-ethylhexyl-4-methoxycinnamate have stronger effects in vivo and therefore require more attention than others.


Subject(s)
Fabaceae , Food , Animals , Humans , Cinnamates , Diet
4.
Chemosphere ; 324: 138314, 2023 May.
Article in English | MEDLINE | ID: mdl-36889467

ABSTRACT

Organochlorine pesticides show biological toxicity and their degradation typically takes many years. Previous studies of agrochemical-contaminated areas have mainly focused on limited target compounds, and emerging pollutants in soil have been overlooked. In this study, we collected soil samples from an abandoned agrochemical-contaminated area. Target analysis and non-target suspect screening by gas chromatography coupled with time-of-flight mass spectrometry were combined for qualitative and quantitative analysis of organochlorine pollutants. Target analysis showed that dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE), and dichlorodiphenyldichloroethane (DDD) were the main pollutants. With concentrations between 3.96 × 106 and 1.38 × 107 ng/g, these compounds posed significant health risks at the contaminated site. Non-target suspect screening identified 126 organochlorine compounds, most of which were chlorinated hydrocarbons and 90% of the compounds contained a benzene ring structure. The possible transformation pathways of DDT were inferred from proven pathways and the compounds identified by non-target suspect screening that had similar structures to DDT. This study will be useful for studies of the degradation mechanism of DDT. Semi-quantitative and hierarchical cluster analysis of compounds in soil showed that the distribution of contaminants in soil was influenced by the types of pollution sources and distance to them. Twenty-two contaminants were found in the soil at relatively high concentrations. The toxicities of 17 of these compounds are currently not known. These results improve our understanding of the environmental behavior of organochlorine contaminants in soil and are useful for further risk assessments of agrochemical-contaminated areas.


Subject(s)
Environmental Pollutants , Hydrocarbons, Chlorinated , Pesticides , Soil Pollutants , DDT/analysis , Agrochemicals/analysis , Gas Chromatography-Mass Spectrometry , Pesticides/analysis , Hydrocarbons, Chlorinated/analysis , Soil/chemistry , Environmental Pollutants/analysis , Soil Pollutants/analysis , Environmental Monitoring/methods
5.
Environ Sci Technol ; 57(14): 5580-5591, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36976867

ABSTRACT

Chlorinated paraffins (CPs) are used in many products, including soft poly(vinyl chloride) curtains, which are used in many indoor environments. Health hazards posed by CPs in curtains are poorly understood. Here, chamber tests and an indoor fugacity model were used to predict CP emissions from soft poly(vinyl chloride) curtains, and dermal uptake through direct contact was assessed using surface wipes. Short-chain and medium-chain CPs accounted for 30% by weight of the curtains. Evaporation drives CP migration, like for other semivolatile organic plasticizers, at room temperature. The CP emission rate to air was 7.09 ng/(cm2 h), and the estimated short-chain and medium-chain CP concentrations were 583 and 95.3 ng/m3 in indoor air 21.2 and 172 µg/g in dust, respectively. Curtains could be important indoor sources of CPs to dust and air. The calculated total daily CP intakes from air and dust were 165 ng/(kg day) for an adult and 514 ng/(kg day) for a toddler, and an assessment of dermal intake through direct contact indicated that touching just once could increase intake by 274 µg. The results indicated that curtains, which are common in houses, could pose considerable health risks through inhalation of and dermal contact with CPs.


Subject(s)
Air Pollution, Indoor , Hydrocarbons, Chlorinated , Vinyl Chloride , Inhalation Exposure/analysis , Paraffin/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Hydrocarbons, Chlorinated/analysis , Dust/analysis , China
6.
Chemosphere ; 297: 134230, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35257700

ABSTRACT

Short-chain (SC) and medium-chain (MC) chlorinated paraffins (CPs) are found widely in the environment. Little research into air-soil exchange of SCCPs and MCCPs has been performed. In this study, CP concentrations, congener group profiles, and air-soil exchange in a typical contaminated area were investigated. A total of 10 soil samples and 10 air samples were collected from Zhoushan, an island in China. The samples were analyzed by two-dimensional gas chromatography electron capture negative ionization mass spectrometry. The SCCP and MCCP concentrations in the soil samples were 72-3842 and 117-8819 ng/g, respectively, and the SCCP and MCCP concentrations in the air samples were 57-208 and 1.8-25 ng/m3, respectively. The highest CP concentrations in both soil and air were found in samples from near shipyards, possibly because of CPs being emitted from metal cutting fluids and marine paints used at the shipyards. C14-15Cl7-9 were the dominant CP congener groups in the soil samples. C10Cl6-7 were the dominant CP congener groups in the air samples. Chlorinated decane and undecane and penta-, hexa-, and hepta-chlorinated CPs were enriched in the air relative to the soil. These congeners may have been released from the commercial CP-42 and CP-52. The fugacity fractions (ffs) of 48 homologs decreased as Koa increased. The ffs indicated that SCCPs and MCCPs dominated deposition. The net air-soil exchange fluxes of CPs were 201-769 ng/(m2·h). A preliminary risk assessment indicated that CPs pose low ecological risk except at sampling site S7 and do not pose significant health risks.


Subject(s)
Hydrocarbons, Chlorinated , Soil , China , Culture Media , Environmental Monitoring/methods , Gas Chromatography-Mass Spectrometry , Hydrocarbons, Chlorinated/analysis , Paraffin/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...