Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(18): 10035-10044, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37097713

ABSTRACT

Compared with traditional assay techniques, field-effect transistors (FETs) have advantages such as fast response, high sensitivity, being label-free, and point-of-care detection, while lacking generality to detect a wide range of small molecules since most of them are electrically neutral with a weak doping effect. Here, we demonstrate a photo-enhanced chemo-transistor platform based on a synergistic photo-chemical gating effect in order to overcome the aforementioned limitation. Under light irradiation, accumulated photoelectrons generated from covalent organic frameworks offer a photo-gating modulation, amplifying the response to small molecule adsorption including methylglyoxal, p-nitroaniline, nitrobenzene, aniline, and glyoxal when measuring the photocurrent. We perform testing in buffer, artificial urine, sweat, saliva, and diabetic mouse serum. The limit of detection is down to 10-19 M methylglyoxal, about 5 orders of magnitude lower than existing assay technologies. This work develops a photo-enhanced FET platform to detect small molecules or other neutral species with enhanced sensitivity for applications in fields such as biochemical research, health monitoring, and disease diagnosis.


Subject(s)
Biosensing Techniques , Body Fluids , Animals , Mice , Biosensing Techniques/methods , Pyruvaldehyde , Saliva , Transistors, Electronic
2.
Nano Lett ; 21(22): 9450-9457, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34734737

ABSTRACT

Direct SARS-CoV-2 nucleic acid testing with fast speed and high frequency is crucial for controlling the COVID-19 pandemic. Here, direct testing of SARS-CoV-2 nucleic acid is realized by field-effect transistors (FETs) with an electro-enrichable liquid gate (LG) anchored by tetrahedral DNA nanostructures (TDNs). The applied gate bias electrostatically preconcentrates nucleic acids, while the liquid gate with TDNs provides efficient analyte recognition and signal transduction. The average diagnosis time is ∼80 s, and the limit of detection approaches 1-2 copies in 100 µL of clinical samples without nucleic acid extraction and amplification. As such, TDN-LG FETs solve the dilemma of COVID-19 testing on mass scale that diagnosis accuracy and speed undergo trade-off. In addition, TDN-LG FETs achieve unamplified 10-in-1 pooled nucleic acid testing for the first time, and the results are consistent with PCR. Thus, this technology promises on-site and wide population COVID-19 screening and ensures safe world-reopening.


Subject(s)
COVID-19 , Nanostructures , Nucleic Acids , COVID-19 Testing , DNA/genetics , Humans , Pandemics , SARS-CoV-2 , Sensitivity and Specificity
3.
J Am Chem Soc ; 143(41): 17004-17014, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34623792

ABSTRACT

Rapid screening of infected individuals from a large population is an effective means in epidemiology, especially to contain outbreaks such as COVID-19. The gold standard assays for COVID-19 diagnostics are mainly based on the reverse transcription polymerase chain reaction, which mismatches the requirements for wide-population screening due to time-consuming nucleic acid extraction and amplification procedures. Here, we report a direct nucleic acid assay by using a graphene field-effect transistor (g-FET) with Y-shaped DNA dual probes (Y-dual probes). The assay relies on Y-dual probes modified on g-FET simultaneously targeting ORF1ab and N genes of SARS-CoV-2 nucleic acid, enabling high a recognition ratio and a limit of detection (0.03 copy µL-1) 1-2 orders of magnitude lower than existing nucleic acid assays. The assay realizes the fastest nucleic acid testing (∼1 min) and achieves direct 5-in-1 pooled testing for the first time. Owing to its rapid, ultrasensitive, easily operated features as well as capability in pooled testing, it holds great promise as a comprehensive tool for population-wide screening of COVID-19 and other epidemics.


Subject(s)
DNA Probes , DNA, Viral/analysis , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/virology , Graphite/chemistry , Humans , Limit of Detection
4.
Chem Commun (Camb) ; 57(41): 5071-5074, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33889878

ABSTRACT

Direct and sensitive short-wavelength ultraviolet (UVC) dosimeters could provide a safer disinfection environment against viruses. We developed direct, quantitative, specific and highly sensitive UVC dosimeters based on DNA nanostructure-modified graphene field-effect transistors. Detectable doses of the dosimeters range from 0.005 to 6 kJ m-2 and such dosimeters have at least 5 times better sensitivity than the current direct UV dosimeters.


Subject(s)
DNA/chemistry , Graphite/chemistry , Nanostructures/chemistry , Radiation Dosimeters , Ultraviolet Rays
5.
J Phys Chem Lett ; 11(5): 1909-1914, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32069415

ABSTRACT

Strain-sensitive fluorescence materials have great potential in sensing applications owing to their low cost, intuitive signal, and user friendliness. Organic crystals are one of the most developed fluorescence materials. However, modulation of the fluorescence by strain is still a challenge. Here, for the first time, we investigate the strain-sensitive fluorescence of the two-dimensional (2D) organic crystal. Without interlayer interactions, the molecular arrangement in a 2D crystal can be easily tuned, which results in photoluminescence transformation between monomer emission and excimer emission. The 2D organic crystal has higher sensitivity under strain, compared with bulk organic crystals, showing great potential in practical applications such as tactile monitors, chameleon bionic skin, and visible leakage alarms.

6.
Front Chem ; 7: 142, 2019.
Article in English | MEDLINE | ID: mdl-31058127

ABSTRACT

Conjugated microporous polymers (CMPs) have attracted intensive attention owing to their permanent nanoporosity, large surface area and possibility for functionalization, however their application in energy storage suffers from poor conductivity and low hetero-atom content. Here, we demonstrate a hybrid of conjugated microporous polymers and graphene aerogel with improved conductivity. After treating at 800°C in NH3, the nitrogen content increases to 9.8%. The resulting microporous carbon exhibits a significant rise in supercapacitive performance up to 325 F g-1, 55% higher than pristine triazine-based CMPs, with energy density up to 12.95 Wh kg-1. Moreover, it has high stability with 99% retention after 10,000 cycles at 5 A g-1. The synergy of hierarchical porous structure, graphene-based conduction path and high percentage of hybridization with nitrogen ensures effective ion/electron transport and diffusion, making NH3-treated graphene aerogel/CMP hybrid a promising electrode material in high-performance supercapacitor.

SELECTION OF CITATIONS
SEARCH DETAIL
...