Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Langmuir ; 40(32): 16731-16742, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39073396

ABSTRACT

Dynamic attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy at both solutions and coatings of a semicrystalline silk material derived from Bombyx mori was applied to monitor the ß-sheet conformation, which is known to correlate with silk protein crystallinity. The secondary structure-sensitive Amide I band was analyzed. Two silk protein samples were studied: native-based silk buffer fibroin (NSF) was extracted from silk glands and regenerated silk fibroin (RSF) was extracted from degummed cocoons. Solutions of both NSF and RSF at 2 mg/mL featured low initial ß-sheet contents of 5-12%, which further increased to 47-53% after 24 h. RSF and NSF solutions at 23 mg/mL also featured low initial ß-sheet contents of 9-10%, which yet only slightly increased to 16-17% after 24 h. Coatings deposited from RSF solutions showed high surface integrity (Q > 99%) after rinsing in mineralized water, enabling interfacial drug delivery applications. RSF coatings were post-treated with either formic acid (FA) or pure methanol (MeOH) vapor to showcase inducibility of crystalline domains in RSF coatings. Such coatings were loaded with the model antibiotic drugs tetracycline (TCL) and streptomycin (STRP), and the sustained release of TCL was followed in contact with (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES) buffer. RSF/TCL coatings post-treated with formic acid (FA) vapor followed by methanol (MeOH) vapor showed a significantly lower (52%) initial burst of rather hydrophobic TCL compared to untreated RSF/TCL coatings (72%), while no such significant release difference was observed for hydrophilic STRP. This was rationalized by a specific interaction between nonpolar TCL and hydrophobic crystalline RSF domains.


Subject(s)
Bombyx , Fibroins , Animals , Bombyx/chemistry , Spectroscopy, Fourier Transform Infrared , Fibroins/chemistry , Protein Conformation, beta-Strand , Drug Liberation , Silk/chemistry , Solutions , Coated Materials, Biocompatible/chemistry , Tetracycline/chemistry
2.
Biomed Mater ; 14(4): 045017, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31170696

ABSTRACT

Chitosan fibers were processed using the Net-Shape-Nonwoven (NSN) technique in order to create porous scaffolds which were functionalized in two bioinspired ways: collagen type I coating and unique mineralization with organically modified hydroxyapatite (ormoHAP). While collagen is common to enhance cell attachment on surfaces, the electric-field assisted migration and deposition of ormoHAP on the surface of the NSN-scaffolds is a novel technique which enables sub-micrometer sized mineralization while maintaining the original pore structure. Microscopy revealed fast attachment and morphological adaptation of the cells on both, the pure and the functionalized NSN-scaffolds. Remarkably, the cell number of osteogenically induced hBMSC on ormoHAP-modified NSN-scaffolds increased 3.5-5 fold compared to pure NSN-scaffolds. Osteogenic differentiation of hBMSC/osteoblasts was highest on collagen-functionalized NSN-scaffolds. RT-PCR studies revealed gene expression of ALP, BSP II, and osteocalcin to be high for all NSN-scaffolds. Overall, the NSN-scaffold functionalization with collagen and ormoHAP improved attachment, proliferation, and differentiation of hBMSC and therefore revealed the remarkable potential of their application for the tissue engineering of bone.


Subject(s)
Biocompatible Materials/chemistry , Calcium Phosphates/chemistry , Chitosan/chemistry , Mesenchymal Stem Cells/cytology , Tissue Scaffolds/chemistry , Adult , Animals , Cattle , Cell Adhesion , Cell Differentiation , Cell Proliferation , Collagen/chemistry , Durapatite/chemistry , Female , Humans , Osteoblasts/cytology , Osteogenesis , Tissue Engineering/methods , X-Ray Microtomography , Young Adult
3.
Biomed Tech (Berl) ; 64(s1): 69-71, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30753138
4.
Biomed Tech (Berl) ; 64(s1): 41-46, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30753144
5.
J Biomater Sci Polym Ed ; 27(10): 917-36, 2016 07.
Article in English | MEDLINE | ID: mdl-27109607

ABSTRACT

One possibility to improve the mechanical properties after tendon ruptures is augmentation with a scaffold. Based on wet spinning technology, chitosan fibres were processed to a novel pure high-grade multifilament yarn with reproducible quality. The fibres were braided to obtain a 3D tendon scaffold. The CS fibres and scaffolds were evaluated biomechanically and compared to human supraspinatus (SSP) tendons. For the cytobiological characterization, in vitro cell culture experiments with human mesenchymal stem cells (hMSC) were performed. Three types of 3D circular braided scaffolds were fabricated. Significantly, higher ultimate stress values were measured for scaffold with larger filament yarn, compared to scaffold with smaller filament yarn. During cultivation over 28 days, the cells showed in dependence of isolation method and/or donor a doubling or tripling of the cell number or even a six-fold increase on the CS scaffold, which was comparable to the control (polystyrene) or in the case of cells obtained from human biceps tendon even higher proliferation rates. After 14 days, the scaffold surface was covered homogeneously with a cell layer. In summary, the present work demonstrates that braided chitosan scaffolds constitute a straightforward approach for designing tendon analogues, maintaining important flexibility in scaffold design and providing favourable mechanical properties of the resulting construct.


Subject(s)
Chitosan/chemistry , Mesenchymal Stem Cells/cytology , Tendons/cytology , Tissue Engineering , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Cell Adhesion , Cell Culture Techniques , Cell Proliferation , Cell Survival , Humans , Microscopy, Electron, Scanning , Polystyrenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL