Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Healthcare (Basel) ; 10(8)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35893205

ABSTRACT

Survival analysis is a set of methods for statistical inference concerning the time until the occurrence of an event. One of the main objectives of survival analysis is to evaluate the effects of different covariates on event time. Although the proportional hazards model is widely used in survival analysis, it assumes that the ratio of the hazard functions is constant over time. This assumption is likely to be violated in practice, leading to erroneous inferences and inappropriate conclusions. The accelerated failure time model is an alternative to the proportional hazards model that does not require such a strong assumption. Moreover, it is sometimes plausible to consider the existence of cured patients or long-term survivors. The survival regression models in such contexts are referred to as cure models. In this study, we consider the accelerated failure time cure model with frailty for uncured patients. Frailty is a latent random variable representing patients' characteristics that cannot be described by observed covariates. This enables us to flexibly account for individual heterogeneities. Our proposed model assumes a shifted gamma distribution for frailty to represent uncured patients' heterogeneities. We construct an estimation algorithm for the proposed model, and evaluate its performance via numerical simulations. Furthermore, as an application of the proposed model, we use a real dataset, Specific Health Checkups, concerning the onset of hypertension. Results from a model comparison suggest that the proposed model is superior to existing alternatives.

SELECTION OF CITATIONS
SEARCH DETAIL