Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Cancer ; 10(1): 76-91, 2024 01.
Article in English | MEDLINE | ID: mdl-37880007

ABSTRACT

Serrated lesions are histologically heterogeneous, and detection can be challenging as these lesions have subtle features that may be missed by endoscopy. Furthermore, while approximately 30% of colorectal cancers (CRCs) arise from serrated lesions, only 8-10% of invasive serrated CRCs exhibit serrated morphology at presentation, suggesting potential loss of apparent characteristics with increased malignancy. Thus, understanding the genetic basis driving serrated CRC initiation and progression is critical to improve diagnosis and identify therapeutic biomarkers and targets to guide disease management. This review discusses the preclinical models of serrated CRCs reported to date and how these systems have been used to provide mechanistic insights into tumor initiation, progression, and novel treatment targets.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/pathology , Proto-Oncogene Proteins B-raf/genetics , Cell Transformation, Neoplastic
2.
Breast Cancer Res ; 23(1): 95, 2021 10 03.
Article in English | MEDLINE | ID: mdl-34602068

ABSTRACT

BACKGROUND: Oestrogen receptor-positive (ER+) breast cancer is commonly treated using endocrine therapies such as aromatase inhibitors which block synthesis of oestradiol, but the influence of this therapy on the immune composition of breast tumours has not been fully explored. Previous findings suggest that tumour infiltrating lymphocytes and immune-related gene expression may be altered by treatment with aromatase inhibitors. However, whether these changes are a direct result of impacts on the host immune system or mediated through tumour cells is not known. We aimed to investigate the effect of oestrogen deprivation on the expression of chemokines and immune infiltration in vitro and in an ER+ immunocompetent mouse model. METHODS: RT-qPCR and a bead-based Bioplex system were used to investigate the expression of chemokines in MCF-7 breast cancer cells deprived of oestrogen. A migration assay and flow cytometry were used to measure the migration of human peripheral blood mononuclear cells (PBMCs) to MCF-7 cells grown without the main biologically active oestrogen, oestradiol. Using flow cytometry and immunohistochemistry, we examined the immune cell infiltrate into tumours created by injecting SSM3 ER+ breast cancer cells into wild-type, immunocompetent 129/SvEv mice. RESULTS: This study demonstrates that oestrogen deprivation increases breast cancer secretion of TNF, CCL5, IL-6, IL-8, and CCL22 and alters total human peripheral blood mononuclear cell migration in an in vitro assay. Oestrogen deprivation of breast cancer cells increases migration of CD4+ T cells and decreases migration of CD11c+ and CD14+ PBMC towards cancer cells. PBMC migration towards breast cancer cells can be reduced by treatment with the non-steroidal anti-inflammatory drugs, aspirin and celecoxib. Treatment with endocrine therapy using the aromatase inhibitor letrozole increases CD4+ T cell infiltration into ER+ breast cancer tumours in immune competent mice. CONCLUSIONS: These results suggest that anti-oestrogen treatment of ER+ breast cancer cells can alter cytokine production and immune cells in the area surrounding the cancer cells. These findings may have implications for the combination and timing of anti-oestrogen therapies with other therapies.


Subject(s)
Antineoplastic Agents, Hormonal/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Receptors, Estrogen/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents, Hormonal/pharmacology , Aromatase Inhibitors/pharmacology , Aromatase Inhibitors/therapeutic use , Breast Neoplasms/metabolism , CD4-Positive T-Lymphocytes/immunology , Cell Movement/drug effects , Cell Movement/immunology , Cytokines/metabolism , Estradiol/pharmacology , Female , Humans , Leukocytes, Mononuclear/immunology , MCF-7 Cells , Mice
3.
PLoS Genet ; 17(8): e1009094, 2021 08.
Article in English | MEDLINE | ID: mdl-34398873

ABSTRACT

The systematic identification of genetic events driving cellular transformation and tumor progression in the absence of a highly recurrent oncogenic driver mutation is a challenge in cutaneous oncology. In cutaneous squamous cell carcinoma (cuSCC), the high UV-induced mutational burden poses a hurdle to achieve a complete molecular landscape of this disease. Here, we utilized the Sleeping Beauty transposon mutagenesis system to statistically define drivers of keratinocyte transformation and cuSCC progression in vivo in the absence of UV-IR, and identified both known tumor suppressor genes and novel oncogenic drivers of cuSCC. Functional analysis confirms an oncogenic role for the ZMIZ genes, and tumor suppressive roles for KMT2C, CREBBP and NCOA2, in the initiation or progression of human cuSCC. Taken together, our in vivo screen demonstrates an extremely heterogeneous genetic landscape of cuSCC initiation and progression, which can be harnessed to better understand skin oncogenic etiology and prioritize therapeutic candidates.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/genetics , Cell Transformation, Neoplastic/genetics , Keratinocytes/pathology , Mutagenesis, Insertional/methods , Sequence Analysis, DNA/methods , Skin Neoplasms/genetics , CREB-Binding Protein/genetics , Carcinoma, Squamous Cell/pathology , Cell Transformation, Neoplastic/pathology , DNA Transposable Elements , DNA-Binding Proteins/genetics , Disease Progression , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , High-Throughput Nucleotide Sequencing , Humans , Nuclear Receptor Coactivator 2/genetics , Skin Neoplasms/pathology
4.
Cancers (Basel) ; 13(2)2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33435458

ABSTRACT

A central challenge in cancer genomics is the systematic identification of single and cooperating tumor suppressor gene mutations driving cellular transformation and tumor progression in the absence of oncogenic driver mutation(s). Multiple in vitro and in vivo gene inactivation screens have enhanced our understanding of the tumor suppressor gene landscape in various cancers. However, these studies are limited to single or combination gene effects, specific organs, or require sensitizing mutations. In this study, we developed and utilized a Sleeping Beauty transposon mutagenesis system that functions only as a gene trap to exclusively inactivate tumor suppressor genes. Using whole body transposon mobilization in wild type mice, we observed that cumulative gene inactivation can drive tumorigenesis of solid cancers. We provide a quantitative landscape of the tumor suppressor genes inactivated in these cancers and show that, despite the absence of oncogenic drivers, these genes converge on key biological pathways and processes associated with cancer hallmarks.

5.
BMC Cancer ; 18(1): 805, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30092766

ABSTRACT

BACKGROUND: Altered cellular metabolism is a hallmark of cancer but the association between utilisation of particular metabolic pathways in tumours and patient outcome is poorly understood. We sought to investigate the association between fatty acid metabolism and outcome in breast and other cancers. METHODS: Cox regression analysis and Gene Set Enrichment Analysis (GSEA) of a gene expression dataset from primary breast tumours with well annotated clinical and survival information was used to identify genesets associated with outcome. A geneset representing fatty acid oxidation (FAO) was then examined in other datasets. A doxycycline-inducible breast cancer cell line model overexpressing the rate-limiting enzyme in FAO, carnitine palmitoyl transferase 1A (CPT1A) was generated and analysed to confirm the association between FAO and cancer-associated characteristics in vitro. RESULTS: We identified a gene expression signature composed of 19 genes associated with fatty acid oxidation (FAO) that was significantly associated with patient outcome. We validated this observation in eight independent breast cancer datasets, and also observed the FAO signature to be prognostic in other cancer types. Furthermore, the FAO signature expression was significantly downregulated in tumours, compared to normal tissues from a variety of anatomic origins. In breast cancer, the expression of CPT1A was higher in oestrogen receptor (ER)-positive, compared to ER-negative tumours and cell lines. Importantly, overexpression of CPT1A significantly decreased the proliferation and wound healing migration rates of MDA-MB231 breast cancer cells, compared to basal expression control. CONCLUSIONS: Our findings suggest that FAO is downregulated in multiple tumour types, and activation of this pathway may lower cancer cell proliferation, and is associated with improved outcomes in some cancers.


Subject(s)
Breast Neoplasms/metabolism , Carnitine O-Palmitoyltransferase/genetics , Fatty Acids/metabolism , Neoplasm Proteins/genetics , Adult , Aged , Aged, 80 and over , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease-Free Survival , Estrogen Receptor alpha/genetics , Fatty Acids/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Kaplan-Meier Estimate , Lipid Metabolism/genetics , Male , Middle Aged , Oxidation-Reduction , Prognosis , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...