Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Microbiol Infect ; 28(2): 292-296, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34139334

ABSTRACT

OBJECTIVES: We aimed to assess the longevity of spike-specific antibody responses and neutralizing activity in the plasma of recovered Middle East respiratory syndrome (MERS) patients. METHODS: We traced the antibody responses and neutralizing activity against MERS coronavirus (MERS-CoV) in peripheral blood samples collected from 70 recovered MERS patients for 5 years after the 2015 MERS outbreak in South Korea. We also measured the half-life of neutralizing antibody titres in the longitudinal specimens. RESULTS: The seropositivity rate persisted for up to 4 years (50.7-56.1%), especially in MERS patients who suffered from severe pneumonia, and then decreased (35.9%) in the fifth year. Although the spike-specific antibody responses decreased gradually, the neutralizing antibody titres decreased more rapidly (half-life: 20 months) in 19 participants without showing negative seroconversion during the study period. Only five (26.3%) participants had neutralizing antibody titres greater than 1/1000 of PRNT50, and a high neutralizing antibody titre over 1/5000 was not detected in the participants at five years after infection. DISCUSSION: The seropositivity rate of the recovered MERS patients persisted up to 4 years after infection and significantly dropped in the fifth year, whereas the neutralizing antibody titres against MERS-CoV decreased more rapidly and were significantly reduced at 4 years after infection.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Antibodies, Neutralizing , Antibodies, Viral , Coronavirus Infections/epidemiology , Follow-Up Studies , Humans , Spike Glycoprotein, Coronavirus
2.
Clin Infect Dis ; 73(3): e550-e558, 2021 08 02.
Article in English | MEDLINE | ID: mdl-32898238

ABSTRACT

BACKGROUND: Zoonotic coronaviruses have emerged as a global threat by causing fatal respiratory infections. Given the lack of specific antiviral therapies, application of human convalescent plasma retaining neutralizing activity could be a viable therapeutic option that can bridges this gap. METHODS: We traced antibody responses and memory B cells in peripheral blood collected from 70 recovered Middle East respiratory syndrome coronavirus (MERS-CoV) patients for 3 years after the 2015 outbreak in South Korea. We also used a mouse infection model to examine whether the neutralizing activity of collected sera could provide therapeutic benefit in vivo upon lethal MERS-CoV challenge. RESULTS: Anti-spike-specific IgG responses, including neutralizing activity and antibody-secreting memory B cells, persisted for up to 3 years, especially in MERS patients who suffered from severe pneumonia. Mean antibody titers gradually decreased annually by less than 2-fold. Levels of antibody responses were significantly correlated with fever duration, viral shedding periods, and maximum viral loads observed during infection periods. In a transgenic mice model challenged with lethal doses of MERS-CoV, a significant reduction in viral loads and enhanced survival was observed when therapeutically treated with human plasma retaining a high neutralizing titer (> 1/5000). However, this failed to reduce pulmonary pathogenesis, as revealed by pathological changes in lungs and initial weight loss. CONCLUSIONS: High titers of neutralizing activity are required for suppressive effect on the viral replication but may not be sufficient to reduce inflammatory lesions upon fatal infection. Therefore, immune sera with high neutralizing activity must be carefully selected for plasma therapy of zoonotic coronavirus infection.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Coronavirus Infections/drug therapy , Humans , Mice , Republic of Korea , Spike Glycoprotein, Coronavirus
3.
Emerg Infect Dis ; 25(6): 1161-1168, 2019 06.
Article in English | MEDLINE | ID: mdl-30900977

ABSTRACT

The unexpectedly large outbreak of Middle East respiratory syndrome in South Korea in 2015 was initiated by an infected traveler and amplified by several "superspreading" events. Previously, we reported the emergence and spread of mutant Middle East respiratory syndrome coronavirus bearing spike mutations (I529T or D510G) with reduced affinity to human receptor CD26 during the outbreak. To assess the potential association of spike mutations with superspreading events, we collected virus genetic information reported during the outbreak and systemically analyzed the relationship of spike sequences and epidemiology. We found sequential emergence of the spike mutations in 2 superspreaders. In vivo virulence of the mutant viruses seems to decline in human patients, as assessed by fever duration in affected persons. In addition, neutralizing activity against these 2 mutant viruses in serum samples from mice immunized with wild-type spike antigen were gradually reduced, suggesting emergence and wide spread of neutralization escapers during the outbreak.


Subject(s)
Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/genetics , Mutation , Adult , Aged , Antibodies, Neutralizing/immunology , Communicable Diseases, Emerging/history , Communicable Diseases, Emerging/immunology , Coronavirus Infections/history , Coronavirus Infections/immunology , Disease Outbreaks , Female , Genotype , History, 21st Century , Humans , Male , Middle Aged , Middle East Respiratory Syndrome Coronavirus/immunology , Neutralization Tests , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
4.
Virology ; 518: 324-327, 2018 05.
Article in English | MEDLINE | ID: mdl-29587190

ABSTRACT

Dipeptidyl peptidase 4 (DPP4) is a receptor for MERS-CoV. The soluble form of DPP4 (sDPP4) circulates systematically and can competitively inhibit MERS-CoV entry into host cells. Here, we measured the concentration of sDPP4 in the plasma and sputa of 14 MERS-CoV-infected patients of various degrees of disease severity. The concentration of sDPP4 in the plasma of MERS patients (474.76 ±â€¯108.06 ng/ml) was significantly lower than those of healthy controls (703.42 ±â€¯169.96 ng/ml), but there were no significant differences among the patient groups. Interestingly, plasma levels of IL-10 and EGF were negatively and positively correlated with sDPP4 concentrations, respectively. The sDPP4 levels in sputa were less than 300 ng/ml. Viral infection was inhibited by 50% in the presence of more than 8000 ng/ml of sDPP4. Therefore, sDPP4 levels in the plasma of MERS patients are significantly reduced below the threshold needed to exert an antiviral effect against MERS-CoV infection.


Subject(s)
Coronavirus Infections/pathology , Dipeptidyl Peptidase 4/blood , Plasma/chemistry , Dipeptidyl Peptidase 4/analysis , EGF Family of Proteins/blood , Humans , Inhibitory Concentration 50 , Interleukin-10/blood , Sputum/chemistry
5.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 1-11, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27751885

ABSTRACT

Members of the herpesviral family use multiple strategies to hijack infected host cells and exploit cellular signaling for their pathogenesis and latent infection. Among the most intriguing weapons in the arsenal of pathogenic herpesviruses are the constitutively active virally-encoded G protein-coupled receptors (vGPCRs). Even though vGPCRs contribute to viral pathogenesis such as immune evasion and proliferative disorders, the molecular details of how vGPCRs continuously activate cellular signaling are largely unknown. Here, we report that the vGPCR of Herpesvirus saimiri (HVS), an oncogenic γ2-herpesvirus, constitutively activates T cells via a heteromeric interaction with cellular CXCR4. Constitutive T cell activation also occurs with expression of the vGPCR of Kaposi's sarcoma-associated herpesvirus (KSHV), but not the vGPCR of Epstein-Barr virus. Expression of HVS vGPCR down-regulated the surface expression of CXCR4 but did not induce the degradation of the chemokine receptor, suggesting that vGPCR/CXCR4 signaling continues in cytosolic compartments. The physical association of vGPCR with CXCR4 was demonstrated by proximity ligation assay as well as immunoprecipitation. Interestingly, the constitutive activation of T cells by HVS vGPCR is independent of proximal T cell receptor (TCR) signaling molecules, such as TCRß, Lck, and ZAP70, whereas CXCR4 silencing by shRNA abolished T cell activation by vGPCRs of HVS and KSHV. Furthermore, previously identified inactive vGPCR mutants failed to interact with CXCR4. These findings on the positive cooperativity of vGPCR with cellular CXCR4 in T cell activation extend our current understanding of the molecular mechanisms of vGPCR function and highlight the importance of heteromerization for GPCR activity.


Subject(s)
Herpesvirus 2, Saimiriine/metabolism , Herpesvirus 8, Human/metabolism , Receptors, CXCR4/genetics , Receptors, Chemokine/genetics , T-Lymphocytes/virology , Gene Expression Regulation , HEK293 Cells , Herpesvirus 2, Saimiriine/genetics , Herpesvirus 2, Saimiriine/growth & development , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/growth & development , Herpesvirus 4, Human/metabolism , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/growth & development , Host-Pathogen Interactions , Humans , Lymphocyte Activation , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/immunology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Primary Cell Culture , Protein Binding , Protein Multimerization , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, CXCR4/immunology , Receptors, CXCR4/metabolism , Receptors, Chemokine/immunology , Receptors, Chemokine/metabolism , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , ZAP-70 Protein-Tyrosine Kinase/genetics , ZAP-70 Protein-Tyrosine Kinase/immunology , ZAP-70 Protein-Tyrosine Kinase/metabolism
6.
Sci Rep ; 6: 25359, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27146253

ABSTRACT

Despite the ongoing spread of MERS, there is limited knowledge of the factors affecting its severity and outcomes. We analyzed clinical data and specimens from fourteen MERS patients treated in a hospital who collectively represent a wide spectrum of disease severity, ranging from mild febrile illness to fatal pneumonia, and classified the patients into four groups based on severity and mortality. Comparative and kinetic analyses revealed that high viral loads, weak antibody responses, and lymphopenia accompanying thrombocytopenia were associated with disease mortality, whereas persistent and gradual increases in lymphocyte responses might be required for effective immunity against MERS-CoV infection. Leukocytosis, primarily due to increased neutrophils and monocytes, was generally observed in more severe and fatal cases. The blood levels of cytokines such as IL-10, IL-15, TGF-ß, and EGF were either positively or negatively correlated with disease mortality. Robust induction of various chemokines with differential kinetics was more prominent in patients that recovered from pneumonia than in patients with mild febrile illness or deceased patients. The correlation of the virological and immunological responses with disease severity and mortality, as well as their responses to current antiviral therapy, may have prognostic significance during the early phase of MERS.


Subject(s)
Coronavirus Infections/immunology , Leukocytosis/etiology , Lymphopenia/etiology , Middle East Respiratory Syndrome Coronavirus/physiology , Thrombocytopenia/etiology , Adult , Aged , Aged, 80 and over , Coronavirus Infections/complications , Coronavirus Infections/mortality , Coronavirus Infections/virology , Cytokines/metabolism , Epidermal Growth Factor/metabolism , Female , Humans , Kinetics , Leukocytosis/mortality , Lymphopenia/mortality , Male , Middle Aged , Pneumonia/etiology , Pneumonia/mortality , Severity of Illness Index , Thrombocytopenia/mortality , Viral Load , Virus Shedding
7.
mBio ; 7(2): e00019, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26933050

ABSTRACT

UNLABELLED: The newly emerging Middle East respiratory syndrome coronavirus (MERS-CoV) causes a severe respiratory infection with a high mortality rate (~35%). MERS-CoV has been a global threat due to continuous outbreaks in the Arabian peninsula and international spread by infected travelers since 2012. From May to July 2015, a large outbreak initiated by an infected traveler from the Arabian peninsula swept South Korea and resulted in 186 confirmed cases with 38 deaths (case fatality rate, 20.4%). Here, we show the rapid emergence and spread of a mutant MERS-CoV with reduced affinity to the human CD26 receptor during the South Korean outbreak. We isolated 13 new viral genomes from 14 infected patients treated at a hospital and found that 12 of these genomes possess a point mutation in the receptor-binding domain (RBD) of viral spike (S) protein. Specifically, 11 of these genomes have an I529T mutation in RBD, and 1 has a D510G mutation. Strikingly, both mutations result in reduced affinity of RBD to human CD26 compared to wild-type RBD, as measured by surface plasmon resonance analysis and cellular binding assay. Additionally, pseudotyped virus bearing an I529T mutation in S protein showed reduced entry into host cells compared to virus with wild-type S protein. These unexpected findings suggest that MERS-CoV adaptation during human-to-human spread may be driven by host immunological pressure such as neutralizing antibodies, resulting in reduced affinity to host receptor, and thereby impairs viral fitness and virulence, rather than positive selection for a better affinity to CD26. IMPORTANCE: Recently, a large outbreak initiated by an MERS-CoV-infected traveler from the Middle East swept South Korea and resulted in 186 confirmed cases with 38 deaths. This is the largest outbreak outside the Middle East, and it raised strong concerns about the possible emergence of MERS-CoV mutations. Here, we isolated 13 new viral genomes and found that 12 of them possess a point mutation in the receptor-binding domain of viral spike protein, resulting in reduced affinity to the human cognate receptor, CD26, compared to the wild-type virus. These unexpected findings suggest that MERS-CoV adaptation in humans may be driven by host immunological pressure.


Subject(s)
Coronavirus Infections/epidemiology , Dipeptidyl Peptidase 4/metabolism , Disease Outbreaks , Middle East Respiratory Syndrome Coronavirus/physiology , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment , Adaptation, Biological , Coronavirus Infections/virology , Genome, Viral , Humans , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Point Mutation , Protein Binding , Republic of Korea/epidemiology , Selection, Genetic , Sequence Analysis, DNA , Spike Glycoprotein, Coronavirus/genetics , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...