Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1249436, 2023.
Article in English | MEDLINE | ID: mdl-37928537

ABSTRACT

Gap junctions mediate intercellular communications across cellular networks in the nervous and immune systems. Yet their roles in intestinal innate immunity are poorly understood. Here, we show that the gap junction/innexin subunit inx-14 acts in the C. elegans gonad to attenuate intestinal defenses to Pseudomonas aeruginosa PA14 infection through the PMK-1/p38 pathway. RNA-Seq analyses revealed that germline-specific inx-14 RNAi downregulated Notch/GLP-1 signaling, while lysosome and PMK-1/p38 pathways were upregulated. Consistently, disruption of inx-14 or glp-1 in the germline enhanced resistance to PA14 infection and upregulated lysosome and PMK-1/p38 activity. We show that lysosome signaling functions downstream of the INX-14/GLP-1 signaling axis and upstream of PMK-1/p38 pathway to facilitate intestinal defense. Our findings expand the understanding of the links between the reproductive system and intestinal defense, which may be evolutionarily conserved in higher organism.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Gonads , Lysosomes , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Gap Junctions/metabolism , Lysosomes/metabolism , Transcription Factors/metabolism
2.
Mol Cell Proteomics ; 21(5): 100222, 2022 05.
Article in English | MEDLINE | ID: mdl-35257887

ABSTRACT

Cerebral stroke is one of the leading causes of death in adults worldwide. However, the molecular mechanisms of stroke-induced neuron injury are not fully understood. Here, we obtained phosphoproteomic and proteomic profiles of the acute ischemic hippocampus by LC-MS/MS analysis. Quantitative phosphoproteomic analyses revealed that the dysregulated phosphoproteins were involved in synaptic components and neurotransmission. We further demonstrated that phosphorylation of Synaptotagmin-1 (Syt1) at the Thr112 site in cultured hippocampal neurons aggravated oxygen-glucose deprivation-induced neuronal injury. Immature neurons with low expression of Syt1 exhibit slight neuronal injury in a cerebral ischemia model. Administration of the Tat-Syt1T112A peptide protects neurons against cerebral ischemia-induced injury in vitro and in vivo. Surprisingly, potassium voltage-gated channel subfamily KQT member 2 (Kcnq2) interacted with Syt1 and Annexin A6 (Anxa6) and alleviated Syt1-mediated neuronal injury upon oxygen-glucose deprivation treatment. These results reveal a mechanism underlying neuronal injury and may provide new targets for neuroprotection after acute cerebral ischemia onset.


Subject(s)
Brain Ischemia , Proteomics , Brain Ischemia/metabolism , Cells, Cultured , Chromatography, Liquid , Glucose/metabolism , Humans , Neurons/metabolism , Oxygen/metabolism , Tandem Mass Spectrometry
3.
Front Immunol ; 12: 744454, 2021.
Article in English | MEDLINE | ID: mdl-34804026

ABSTRACT

Innate immunity is the first line of host defense against pathogen infection in metazoans. However, the molecular mechanisms of the complex immune regulatory network are not fully understood. Based on a transcriptome profiling of the nematode Caenorhabditis elegans, we found that a bZIP transcription factor ZIP-11 was up-regulated upon Pseudomonas aeruginosa PA14 infection. The tissue specific RNAi knock-down and rescue data revealed that ZIP-11 acts in intestine to promote host resistance against P. aeruginosa PA14 infection. We further showed that intestinal ZIP-11 regulates innate immune response through constituting a feedback loop with the conserved PMK-1/p38 mitogen-activated protein signaling pathway. Intriguingly, ZIP-11 interacts with a CCAAT/enhancer-binding protein, CEBP-2, to mediate the transcriptional response to P. aeruginosa PA14 infection independently of PMK-1/p38 pathway. In addition, human homolog ATF4 can functionally substitute for ZIP-11 in innate immune regulation of C. elegans. Our findings indicate that the ZIP-11/ATF4 genetic program activates local innate immune response through conserved PMK-1/p38 and CEBP-2/C/EBPγ immune signals in C. elegans, raising the possibility that a similar process may occur in other organisms.


Subject(s)
Basic-Leucine Zipper Transcription Factors/immunology , Caenorhabditis elegans Proteins/immunology , Immunity, Innate/immunology , Activating Transcription Factor 4/immunology , Animals , Animals, Genetically Modified , Caenorhabditis elegans/immunology , Humans
4.
Neurosci Lett ; 747: 135662, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33484738

ABSTRACT

Stroke is one of the leading causes of death in adults worldwide. However, the mechanism causing neuronal death remains poorly understood. Our previous report showed that enolase1 (ENO1), a key glycolytic enzyme, alleviates cerebral ischemia-induced neuronal injury. It remained unclear whether enolase2 (ENO2) affects neuronal injury in stroke models. Here, we examined the effects of ENO2 in several stroke models. The results showed that the expression level of ENO2 was downregulated after 3 h of cerebral ischemia by middle cerebral artery occlusion (MCAO) in the mouse model. ENO2 was expressed in mouse brain and cultured hippocampus neurons. Overexpression of ENO2 in cultured hippocampus neurons did not affect neuronal injury in our oxygen-glucose deprivation (OGD) model. Interestingly, double knock-down (KD) of ENO1 and ENO2 increased neuronal injury while either KD of ENO1 or ENO2 failed to increase neuronal injury in OGD. Deletion of ENO1 did not affect anoxia-starvation (AS)-induced worm death in C. elegans. These findings demonstrated that ENO2 and ENO1 work together against neuronal injury in these stroke models.


Subject(s)
Brain Injuries/metabolism , Brain Ischemia/metabolism , Neurons/metabolism , Phosphopyruvate Hydratase/metabolism , Stroke/metabolism , Animals , Apoptosis/drug effects , Brain Injuries/pathology , Brain Ischemia/pathology , Disease Models, Animal , Infarction, Middle Cerebral Artery/metabolism , Mice, Inbred C57BL , Stroke/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...