Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7943, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040746

ABSTRACT

Manipulating the rotational as well as the translational degrees of freedom of rigid bodies has been a crucial ingredient in diverse areas, from optically controlled micro-robots, navigation, and precision measurements at macroscale to artificial and biological Brownian motors at nanoscale. Here, we demonstrate feedback cooling of all the angular motions of a near-spherical neutral nanoparticle with all the translational motions feedback-cooled to near the ground state. The occupation numbers of the three translational motions are 6 ± 1, 6 ± 1, and 0.69 ± 0.18. A tight, anisotropic optical confinement allows us to clearly observe three angular oscillations and to identify the ratio of two radii to the longest radius with a precision of 0.08 %. We develop a thermometry for three angular oscillations and realize feedback cooling of them to temperatures of lower than 0.03 K by electrically controlling the electric dipole moment of the nanoparticle.

2.
Opt Express ; 30(15): 26716-26727, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236858

ABSTRACT

We propose and demonstrate purely optical feedback cooling of neutral nanoparticles in an optical lattice to an occupation number of 0.85 ± 0.20. The cooling force is derived from the optical gradients of displaced optical lattices produced with two sidebands on the trapping laser. To achieve highly accurate position observations required for cooling near the ground state, we reduce the laser intensity noise to a relative power noise of 6×10-8/Hz in a frequency band of 30 kHz to 600 kHz. We establish a reproducible method for neutralizing nanoparticles at high vacuum via a combination of discharging and irradiating an ultraviolet light. Our results form an important basis for the investigation of quantum mechanical properties of ultracold nanoparticles and are also useful for precision measurements with neutral nanoparticles.

3.
Nature ; 507(7493): 475-9, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24670766

ABSTRACT

Atomic and molecular samples reduced to temperatures below one microkelvin, yet still in the gas phase, afford unprecedented energy resolution in probing and manipulating the interactions between their constituent particles. As a result of this resolution, atoms can be made to scatter resonantly on demand, through the precise control of a magnetic field. For simple atoms, such as alkalis, scattering resonances are extremely well characterized. However, ultracold physics is now poised to enter a new regime, where much more complex species can be cooled and studied, including magnetic lanthanide atoms and even molecules. For molecules, it has been speculated that a dense set of resonances in ultracold collision cross-sections will probably exhibit essentially random fluctuations, much as the observed energy spectra of nuclear scattering do. According to the Bohigas-Giannoni-Schmit conjecture, such fluctuations would imply chaotic dynamics of the underlying classical motion driving the collision. This would necessitate new ways of looking at the fundamental interactions in ultracold atomic and molecular systems, as well as perhaps new chaos-driven states of ultracold matter. Here we describe the experimental demonstration that random spectra are indeed found at ultralow temperatures. In the experiment, an ultracold gas of erbium atoms is shown to exhibit many Fano-Feshbach resonances, of the order of three per gauss for bosons. Analysis of their statistics verifies that their distribution of nearest-neighbour spacings is what one would expect from random matrix theory. The density and statistics of these resonances are explained by fully quantum mechanical scattering calculations that locate their origin in the anisotropy of the atoms' potential energy surface. Our results therefore reveal chaotic behaviour in the native interaction between ultracold atoms.

SELECTION OF CITATIONS
SEARCH DETAIL