Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 384(6695): eadi2421, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38696576

ABSTRACT

Cell cycle events are coordinated by cyclin-dependent kinases (CDKs) to ensure robust cell division. CDK4/6 and CDK2 regulate the growth 1 (G1) to synthesis (S) phase transition of the cell cycle by responding to mitogen signaling, promoting E2F transcription and inhibition of the anaphase-promoting complex. We found that this mechanism was still required in G2-arrested cells to prevent cell cycle exit after the S phase. This mechanism revealed a role for CDK4/6 in maintaining the G2 state, challenging the notion that the cell cycle is irreversible and that cells do not require mitogens after passing the restriction point. Exit from G2 occurred during ribotoxic stress and was actively mediated by stress-activated protein kinases. Upon relief of stress, a significant fraction of cells underwent a second round of DNA replication that led to whole-genome doubling.


Subject(s)
Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Endoreduplication , G2 Phase Cell Cycle Checkpoints , Stress, Physiological , Humans , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 6/genetics , E2F Transcription Factors/metabolism , E2F Transcription Factors/genetics , S Phase , Cell Line
2.
Dev Cell ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38640927

ABSTRACT

Whole-genome duplication (WGD) is a frequent event in cancer evolution that fuels chromosomal instability. WGD can result from mitotic errors or endoreduplication, yet the molecular mechanisms that drive WGD remain unclear. Here, we use live single-cell analysis to characterize cell-cycle dynamics upon aberrant Ras-ERK signaling. We find that sustained ERK signaling in human cells leads to reactivation of the APC/C in G2, resulting in tetraploid G0-like cells that are primed for WGD. This process is independent of DNA damage or p53 but dependent on p21. Transcriptomics analysis and live-cell imaging showed that constitutive ERK activity promotes p21 expression, which is necessary and sufficient to inhibit CDK activity and which prematurely activates the anaphase-promoting complex (APC/C). Finally, either loss of p53 or reduced ERK signaling allowed for endoreduplication, completing a WGD event. Thus, sustained ERK signaling-induced G2 cell cycle exit represents an alternative path to WGD.

3.
Elife ; 92020 09 17.
Article in English | MEDLINE | ID: mdl-32940599

ABSTRACT

A large fraction of human cancers contain genetic alterations within the Mitogen Activated Protein Kinase (MAPK) signaling network that promote unpredictable phenotypes. Previous studies have shown that the temporal patterns of MAPK activity (i.e. signaling dynamics) differentially regulate cell behavior. However, the role of signaling dynamics in mediating the effects of cancer driving mutations has not been systematically explored. Here, we show that oncogene expression leads to either pulsatile or sustained ERK activity that correlate with opposing cellular behaviors (i.e. proliferation vs. cell cycle arrest, respectively). Moreover, sustained-but not pulsatile-ERK activity triggers ERK activity waves in unperturbed neighboring cells that depend on the membrane metalloprotease ADAM17 and EGFR activity. Interestingly, the ADAM17-EGFR signaling axis coordinates neighboring cell migration toward oncogenic cells and is required for oncogenic cell extrusion. Overall, our data suggests that the temporal patterns of MAPK activity differentially regulate cell autonomous and non-cell autonomous effects of oncogene expression.


In animals, the MAPK pathway is a network of genes that helps a cell to detect and then respond to an external signal by switching on or off a specific genetic program. In particular, cells use this pathway to communicate with each other. In an individual cell, the MAPK pathway shows fluctuations in activity over time. Mutations in the genes belonging to the MAPK pathway are often one of the first events that lead to the emergence of cancers. However, different mutations in the genes of the pathway can have diverse effects on a cell's behavior: some mutations cause the cell to divide while others make it migrate. Recent research has suggested that these effects may be caused by changes in the pattern of MAPK signaling activity over time. Here, Aikin et al. used fluorescent markers to document how different MAPK mutations influence the behavior of a human breast cell and its healthy neighbors. The experiments showed that cells with different MAPK mutations behaved in one of two ways: the signaling quickly pulsed between high and low levels of activity, or it remained at a sustained high level. In turn, these two signaling patterns altered cell behavior in different ways. Pulsed signaling led to more cell division, while sustained signaling stopped division and increased migration. Aikin et al. then examined the effect of the MAPK mutations on neighboring healthy cells. Sustained signaling from the cancerous cell caused a wave of signaling activity in the surrounding cells. This led the healthy cells to divide and migrate toward the cancerous cell, pushing it out of the tissue layer. It is not clear if these changes protect against or promote cancer progression in living tissue. However, these results explain why specific cancer mutations cause different behaviors in cells.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , MAP Kinase Signaling System/genetics , Mitogen-Activated Protein Kinases/genetics , Neoplasms/genetics , Oncogenes/genetics , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Cell Line, Tumor , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Mitogen-Activated Protein Kinases/metabolism , Mutation/genetics , Neoplasms/metabolism
4.
Neuron ; 91(4): 863-877, 2016 Aug 17.
Article in English | MEDLINE | ID: mdl-27478019

ABSTRACT

Food texture has enormous effects on food preferences. However, the mechanosensory cells and key molecules responsible for sensing the physical properties of food are unknown. Here, we show that akin to mammals, the fruit fly, Drosophila melanogaster, prefers food with a specific hardness or viscosity. This food texture discrimination depends upon a previously unknown multidendritic (md-L) neuron, which extends elaborate dendritic arbors innervating the bases of taste hairs. The md-L neurons exhibit directional selectivity in response to mechanical stimuli. Moreover, these neurons orchestrate different feeding behaviors depending on the magnitude of the stimulus. We demonstrate that the single Drosophila transmembrane channel-like (TMC) protein is expressed in md-L neurons, where it is required for sensing two key textural features of food-hardness and viscosity. We propose that md-L neurons are long sought after mechanoreceptor cells through which food mechanics are perceived and encoded by a taste organ, and that this sensation depends on TMC. VIDEO ABSTRACT.


Subject(s)
Drosophila Proteins/physiology , Drosophila melanogaster/physiology , Feeding Behavior/physiology , Food Preferences/physiology , Hardness , Membrane Proteins/physiology , Taste/physiology , Animals , Drosophila Proteins/biosynthesis , Mechanoreceptors/physiology , Membrane Proteins/biosynthesis , Neurons/metabolism , Neurons/physiology , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...