Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
mBio ; 9(5)2018 10 09.
Article in English | MEDLINE | ID: mdl-30301848

ABSTRACT

Cyclic ß-sheet decapeptides from the tyrocidine group and the homologous gramicidin S were the first commercially used antibiotics, yet it remains unclear exactly how they kill bacteria. We investigated their mode of action using a bacterial cytological profiling approach. Tyrocidines form defined ion-conducting pores, induce lipid phase separation, and strongly reduce membrane fluidity, resulting in delocalization of a broad range of peripheral and integral membrane proteins. Interestingly, they also cause DNA damage and interfere with DNA-binding proteins. Despite sharing 50% sequence identity with tyrocidines, gramicidin S causes only mild lipid demixing with minor effects on membrane fluidity and permeability. Gramicidin S delocalizes peripheral membrane proteins involved in cell division and cell envelope synthesis but does not affect integral membrane proteins or DNA. Our results shed a new light on the multifaceted antibacterial mechanisms of these antibiotics and explain why resistance to them is virtually nonexistent.IMPORTANCE Cyclic ß-sheet decapeptides, such as tyrocidines and gramicidin S, were among the first antibiotics in clinical application. Although they have been used for such a long time, there is virtually no resistance to them, which has led to a renewed interest in this peptide class. Both tyrocidines and gramicidin S are thought to disrupt the bacterial membrane. However, this knowledge is mainly derived from in vitro studies, and there is surprisingly little knowledge about how these long-established antibiotics kill bacteria. Our results shed new light on the antibacterial mechanism of ß-sheet peptide antibiotics and explain why they are still so effective and why there is so little resistance to them.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Gramicidin/pharmacology , Tyrocidine/pharmacology , Bacillus subtilis/ultrastructure , Cell Membrane/drug effects , Cell Wall/drug effects , DNA Damage/drug effects , DNA-Binding Proteins/metabolism , Microbial Sensitivity Tests , Microscopy, Electron
SELECTION OF CITATIONS
SEARCH DETAIL