Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
1.
Hum Reprod Open ; 2024(2): hoae017, 2024.
Article in English | MEDLINE | ID: mdl-38699533

ABSTRACT

BACKGROUND: The widespread interest in male reproductive health (MRH), fueled by emerging evidence, such as the global decline in sperm counts, has intensified concerns about the status of MRH. Consequently, there is a pressing requirement for a strategic, systematic approach to identifying critical questions, collecting pertinent information, and utilizing these data to develop evidence-based strategies. The methods for addressing these questions and the pathways toward their answers will inevitably vary based on the variations in cultural, geopolitical, and health-related contexts. To address these issues, a conjoint ESHRE and Male Reproductive Health Initiative (MRHI) Campus workshop was convened. OBJECTIVE AND RATIONALE: The three objectives were: first, to assess the current state of MRH around the world; second, to identify some of the key gaps in knowledge; and, third, to examine how MRH stakeholders can collaboratively generate intelligent and effective paths forward. SEARCH METHODS: Each expert reviewed and summarized the current literature that was subsequently used to provide a comprehensive overview of challenges related to MRH. OUTCOMES: This narrative report is an overview of the data, opinions, and arguments presented during the workshop. A number of outcomes are presented and can be summarized by the following overarching themes: MRH is a serious global issue and there is a plethora of gaps in our understanding; there is a need for widespread international collaborative networks to undertake multidisciplinary research into fundamental issues, such as lifestyle/environmental exposure studies, and high-quality clinical trials; and there is an urgent requirement for effective strategies to educate young people and the general public to safeguard and improve MRH across diverse population demographics and resources. LIMITATIONS REASONS FOR CAUTION: This was a workshop where worldwide leading experts from a wide range of disciplines presented and discussed the evidence regarding challenges related to MRH. While each expert summarized the current literature and placed it in context, the data in a number of areas are limited and/or sparse. Equally, important areas for consideration may have been missed. Moreover, there are clear gaps in our knowledge base, which makes some conclusions necessarily speculative and warranting of further study. WIDER IMPLICATIONS: Poor MRH is a global issue that suffers from low awareness among the public, patients, and heathcare professionals. Addressing this will require a coordinated multidisciplinary approach. Addressing the significant number of knowledge gaps will require policy makers prioritizing MRH and its funding. STUDY FUNDING/COMPETING INTERESTS: The authors would like to extend their gratitude to ESHRE for providing financial support for the Budapest Campus Workshop, as well as to Microptic S.L. (Barcelona) for kindly sponsoring the workshop. P.B. is the Director of the not-for-profit organization Global Action on Men's Health and receives fees and expenses for his work, (which includes the preparation of this manuscript). Conflicts of interest: C.J.D.J., C.L.R.B., R.A.A., P.B., M.P.C., M.L.E., N.G., N.J., C.K., AAP, M.K.O., S.R.-H., M.H.V.-L.: ESHRE Campus Workshop 2022 (Travel support-personal). C.J.D.J.: Cambridge University Press (book royalties-personal). ESHRE Annual Meeting 2022 and Yale University Panel Meeting 2023 (Travel support-personal). C.L.R.B.: Ferring and IBSA (Lecture), RBMO editor (Honorarium to support travel, etc.), ExSeed and ExScentia (University of Dundee), Bill & Melinda Gates Foundation (for research on contraception). M.P.C.: Previously received funding from pharmaceutical companies for health economic research. The funding was not in relation to this work and had no bearing on the contents of this work. No funding from other sources has been provided in relation to this work (funding was provided to his company Global Market Access Solutions). M.L.E.: Advisor to Ro, Doveras, Next, Hannah, Sandstone. C.K.: European Academy of Andrology (Past president UNPAID), S.K.: CEO of His Turn, a male fertility Diagnostic and Therapeutic company (No payments or profits to date). R.I.M.: www.healthymale.org.au (Australian Government funded not for profit in men's health sector (Employed as Medical Director 0.2 FET), Monash IVF Pty Ltd (Equity holder)). N.J.: Merck (consulting fees), Gedeon Richter (honoraria). S.R.-H.: ESHRE (Travel reimbursements). C.N.: LLC (Nursing educator); COMMIT (Core Outcomes Measures for Infertility Trials) Advisor, meeting attendee, and co-author; COMMA (Core Outcomes in Menopause) Meeting attendee, and co-author; International Federation of Gynecology and Obstetrics (FIGO) Delegate Letters and Sciences; ReproNovo, Advisory board; American Board of Urology Examiner; American Urological Association Journal subsection editor, committee member, guidelines co-author Ferring Scientific trial NexHand Chief Technology Officer, stock ownership Posterity Health Board member, stock ownership. A.P.: Economic and Social Research Council (A collaborator on research grant number ES/W001381/1). Member of an advisory committee for Merck Serono (November 2022), Member of an advisory board for Exceed Health, Speaker fees for educational events organized by Mealis Group; Chairman of the Cryos External Scientific Advisory Committee: All fees associated with this are paid to his former employer The University of Sheffield. Trustee of the Progress Educational Trust (Unpaid). M.K.O.: National Health and Medical Research Council and Australian Research Council (Funding for research of the topic of male fertility), Bill and Melinda Gates Foundation (Funding aimed at the development of male gamete-based contraception), Medical Research Future Fund (Funding aimed at defining the long-term consequences of male infertility). M.H.V.-L.: Department of Sexual and Reproductive Health and Research (SRH)/Human Reproduction Programme (HRP) Research Project Panel RP2/WHO Review Member; MRHI (Core Group Member), COMMIT (member), EGOI (Member); Human Reproduction (Associate Editor), Fertility and Sterility (Editor), AndroLATAM (Founder and Coordinator).

2.
Hum Reprod ; 38(10): 1861-1871, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37568254

ABSTRACT

In modern post-transition societies, we are reproducing later and living longer. While the impact of age on female reproductive function has been well studied, much less is known about the intersection of age and male reproduction. Our current understanding is that advancing age brings forth a progressive decline in male fertility accompanied by a reduction in circulating testosterone levels and the appearance of age-dependent reproductive pathologies including benign prostatic hypertrophy and erectile dysfunction. Paternal ageing is also associated with a profound increase in sperm DNA damage, the appearance of multiple epigenetic changes in the germ line and an elevated mutational load in the offspring. The net result of such changes is an increase in the disease burden carried by the progeny of ageing males, including dominant genetic diseases such as Apert syndrome and achondroplasia, as well as neuropsychiatric conditions including autism and spontaneous schizophrenia. The genetic basis of these age-related effects appears to involve two fundamental mechanisms. The first is a positive selection mechanism whereby stem cells containing mutations in a mitogen-activated protein kinase pathway gain a selective advantage over their non-mutant counterparts and exhibit significant clonal expansion with the passage of time. The second is dependent on an age-dependent increase in oxidative stress which impairs the steroidogenic capacity of the Leydig cells, disrupts the ability of Sertoli cells to support the normal differentiation of germ cells, and disrupts the functional and genetic integrity of spermatozoa. Given the central importance of oxidative stress in defining the impact of chronological age on male reproduction, there may be a role for antioxidants in the clinical management of this process. While animal studies are supportive of this strategy, carefully designed clinical trials are now needed if we are to realize the therapeutic potential of this approach in a clinical context.


Subject(s)
Reproduction , Semen , Animals , Male , Female , Aging/genetics , Spermatozoa/physiology , Mutation
3.
Antioxidants (Basel) ; 12(5)2023 May 05.
Article in English | MEDLINE | ID: mdl-37237912

ABSTRACT

Routine exposure to chemicals omnipresent in the environment, particularly the so-called endocrine-disrupting chemicals (EDCs), has been associated with decreased sperm quality and increased anomalies in testis. The decline in semen quality and testicular abnormalities have been attributed to the disruption of endocrine signaling as well as oxidative stress. The present study set out to examine the effect of short-term exposure of two common EDCs widely used in the plastic industry: Dibutyl Phthalate (DBP) and Bisphenol AF (BPAF). Our research objective was to focus on the post-testicular compartment of the epididymis, where spermatozoa acquire their functional capacity and are stored. The data obtained indicated no significant effect for either chemicals on sperm viability, motility or acrosome integrity. Neither of the EDCs had a noticeable effect on the structures of the testis and epididymis. However, substantial impact on the integrity of the sperm nucleus and DNA structure was evidenced by a significant increase in nuclear decondensation and DNA base oxidation. The damage observed was postulated to arise from the pro-oxidant properties of the EDCs generating excess of reactive oxygen species (ROS) and triggering a state of oxidative stress. This hypothesis was confirmed when the observed damage was largely blocked by co-administering EDCs with an evidenced-based antioxidant formulation.

4.
Sci Signal ; 16(778): eabp9586, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36976863

ABSTRACT

Mutations in the type III receptor tyrosine kinase FLT3 are frequent in patients with acute myeloid leukemia (AML) and are associated with a poor prognosis. AML is characterized by the overproduction of reactive oxygen species (ROS), which can induce cysteine oxidation in redox-sensitive signaling proteins. Here, we sought to characterize the specific pathways affected by ROS in AML by assessing oncogenic signaling in primary AML samples. The oxidation or phosphorylation of signaling proteins that mediate growth and proliferation was increased in samples from patient subtypes with FLT3 mutations. These samples also showed increases in the oxidation of proteins in the ROS-producing Rac/NADPH oxidase-2 (NOX2) complex. Inhibition of NOX2 increased the apoptosis of FLT3-mutant AML cells in response to FLT3 inhibitors. NOX2 inhibition also reduced the phosphorylation and cysteine oxidation of FLT3 in patient-derived xenograft mouse models, suggesting that decreased oxidative stress reduces the oncogenic signaling of FLT3. In mice grafted with FLT3 mutant AML cells, treatment with a NOX2 inhibitor reduced the number of circulating cancer cells, and combining FLT3 and NOX2 inhibitors increased survival to a greater extent than either treatment alone. Together, these data raise the possibility that combining NOX2 and FLT3 inhibitors could improve the treatment of FLT3 mutant AML.


Subject(s)
Cysteine , Leukemia, Myeloid, Acute , Humans , Animals , Mice , Reactive Oxygen Species/metabolism , Cysteine/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mutation , Protein Kinase Inhibitors/pharmacology , Disease Models, Animal , Cell Line, Tumor , fms-Like Tyrosine Kinase 3/genetics
5.
J Assist Reprod Genet ; 40(1): 83-95, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36515800

ABSTRACT

PURPOSE: Developing optimized techniques for the isolation of human spermatozoa possessing low levels of DNA damage is an important objective for the ART industry. The purpose of this study was to compare a novel electrophoretic system (Felix™) of sperm isolation with a conventional method involving density gradient centrifugation (DGC). METHODS: Five international ART Centres in Australia, India, Sweden, the USA, and China have collaborated in order to compare the quality of the sperm populations isolated by Felix™ and DGC in terms of processing time, sperm concentration, motility, vitality, and DNA integrity as assessed by 3 methods: SCSA, Halo, and TUNEL. RESULTS: Across all centers, 112 comparisons were performed. Although significant differences were noted between centers in terms of the quality of the semen samples subjected for analysis, overall, both methods were equally capable of isolating populations of spermatozoa exhibiting high levels of vitality and progressive motility. The absolute numbers of spermatozoa recovered were significantly (p < 0.001) lower with the Felix™ device although sperm quality was higher with 4/5 centers reporting a significant improvement in DNA integrity relative to DGC (p < 0.01-p < 0.001). In practical terms, the Felix™ device featured a standardized 6 min preparation time whereas clinical DGC protocols varied from center to center but generally took around 40 min to complete. CONCLUSIONS: The Felix™ device is a positive technical development capable of isolating suspensions of highly motile spermatozoa exhibiting low levels of DNA damage in a fraction of the time taken by conventional procedures such as DGC.


Subject(s)
Semen , Sperm Motility , Humans , Male , Cell Separation/methods , Centrifugation, Density Gradient/methods , Spermatozoa , DNA
6.
Reproduction ; 164(6): F109-F124, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36190194

ABSTRACT

In brief: Post-ovulatory ageing of oocytes leads to poor oocyte and embryo quality as well as abnormalities in offspring. This review provides an update on the contributions of oxidative stress to this process and discusses the current literature surrounding the use of antioxidant media to delay post-ovulatory oocyte ageing. Abstract: Following ovulation, the metaphase II stage oocyte has a limited functional lifespan before succumbing to a process known as post-ovulatory oocyte ageing. This progressive demise occurs both in vivo and in vitro and is accompanied by a deterioration in oocyte quality, leading to a well-defined sequelae of reduced fertilisation rates, poor embryo quality, post-implantation errors, and abnormalities in the offspring. Although the physiological consequences of post-ovulatory oocyte ageing have largely been characterised, less is known regarding the molecular mechanisms that drive this process. This review presents an update on the established relationships between the biochemical changes exhibited by the ageing oocyte and the myriad of symptoms associated with the ageing phenotype. In doing so, we consider the molecular events that are potentially involved in orchestrating post-ovulatory ageing with a particular focus on the role of oxidative stress. We highlight the mounting evidence that oxidative stress acts as an initiator for a cascade of events that create the aged oocyte phenotype. Specifically, oxidative stress has the capacity to disrupt mitochondrial function and directly damage multiple intracellular components of the oocyte such as lipids, proteins, and DNA. Finally, this review addresses emerging strategies for delaying post-ovulatory oocyte ageing with emphasis placed on the promise afforded by the use of selected antioxidants to guide the development of media tailored for the preservation of oocyte integrity during in vitro fertilisation procedures.


Subject(s)
Antioxidants , Oocytes , Female , Animals , Antioxidants/metabolism , Oocytes/metabolism , Oxidative Stress , Lipids
7.
Nat Rev Urol ; 19(12): 727-750, 2022 12.
Article in English | MEDLINE | ID: mdl-36100661

ABSTRACT

Over the past decade, mounting evidence has shown an alarming association between male subfertility and poor somatic health, with substantial evidence supporting the increased incidence of oncological disease, cardiovascular disease, metabolic disorders and autoimmune diseases in men who have previously received a subfertility diagnosis. This paradigm is concerning, but might also provide a novel window for a crucial health reform in which the infertile phenotype could serve as an indication of potential pathological conditions. One of the major limiting factors in this association is the poor understanding of the molecular features that link infertility with comorbidities across the life course. Enzymes involved in the lipid oxidation process might provide novel clues to reconcile the mechanistic basis of infertility with incident pathological conditions. Building research capacity in this area is essential to enhance the early detection of disease states and provide crucial information about the disease risk of offspring conceived through assisted reproduction.


Subject(s)
Health Care Reform , Infertility, Male , Male , Humans , Infertility, Male/etiology , Infertility, Male/diagnosis , Incidence , Lipids
8.
Reproduction ; 164(6): F79-F94, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35929832

ABSTRACT

In brief: Many aspects of the reproductive process are impacted by oxidative stress. This article summarizes the chemical nature of reactive oxygen species and their role in both the physiological regulation of reproductive processes and the pathophysiology of infertility. Abstract: This article lays out the fundamental principles of oxidative stress. It describes the nature of reactive oxygen species (ROS), the way in which these potentially toxic metabolites interact with cells and how they impact both cellular function and genetic integrity. The mechanisms by which ROS generation is enhanced to the point that the cells' antioxidant defence mechanisms are overwhelmed are also reviewed taking examples from both the male and female reproductive system, with a focus on gametogenesis and fertilization. The important role of external factors in exacerbating oxidative stress and impairing reproductive competence is also examined in terms of their ability to disrupt the physiological redox regulation of reproductive processes. Developing diagnostic and therapeutic strategies to cope with oxidative stress within the reproductive system will depend on the development of a deeper understanding of the nature, source, magnitude, and location of such stress in order to fashion personalized treatments that meet a given patient's clinical needs.


Subject(s)
Antioxidants , Oxidative Stress , Male , Female , Humans , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Oxidative Stress/physiology , Reproduction , Gametogenesis , Fertilization
9.
Reprod Fertil ; 3(1): R1-R18, 2022 01 01.
Article in English | MEDLINE | ID: mdl-35350651

ABSTRACT

Lipids are dynamic biological molecules that play key roles in metabolism, inflammation, cell signalling and structure. They are biologically significant in the physiology of conception and reproduction. Many of the mechanisms surrounding equine conception and the early feto-maternal dialogue are yet to be understood at a biochemical level. Recently, lipidomic technologies have advanced considerably and analytical strategies have been enhanced and diversified. Consequently, in-depth lipidomic exploration now has the potential to reveal new lipid biomarkers and biochemical relationships that improve our understanding of the processes leading to efficient and successful reproduction. This review considers the role of lipids in conception and establishment of pregnancy, providing new insights into the enigmatic pathways governing early reproductive physiology of the mare. Lay summary: This paper discusses the role that lipids play in the very early stages of pregnancy in the mare. Lipids are microscopic non-soluble molecules that are important components of living cells. The manuscript discusses how lipids influence the reproductive cycle of mares, including ovulation and the detailed biological process of becoming pregnant. It explains how lipids are identified in a laboratory setting with a newly developing technology known as 'lipodomics'. The technology may lead to a more detailed understanding of how mares become pregnant. The focus of the paper is on mare reproduction, but it also draws on similarities with reproduction in other mammals. Remarkably there are gaps in much of our knowledge about the finer details of pregnancy in the horse, and the paper summarises what we already know about lipids, highlighting areas for further research.


Subject(s)
Fertilization , Lipidomics , Animals , Female , Horses , Lipids , Mammals , Pregnancy , Reproduction
10.
Hum Reprod ; 37(4): 629-638, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35079808

ABSTRACT

ABSTRACT: Over the past half-century, the world has witnessed a steep decline in fertility rates in virtually every country on Earth. This universal decline in fertility is being driven by increasing prosperity largely through the mediation of social factors, the most powerful of which are the education of women and an accompanying shift in life's purpose away from procreation. In addition, it is clear that environmental and lifestyle factors are also having a profound impact on our reproductive competence particularly in the male where increasing prosperity is associated with a significant rise in the incidence of testicular cancer and a secular decline in semen quality and testosterone levels. On a different timescale, we should also recognize that the increased prosperity associated with the demographic transition greatly reduces the selection pressure on high fertility genes by lowering the rates of infant and childhood mortality. The retention of poor fertility genes within the human population is also being exacerbated by the increased uptake of ART. It is arguable that all of these elements are colluding to drive our species into an infertility trap. If we are to avoid the latter, it will be important to recognize the factors contributing to this phenomenon and adopt the social, political, environmental and lifestyle changes needed to bring this situation under control.


Subject(s)
Infertility , Testicular Neoplasms , Birth Rate , Child , Female , Fertility , Humans , Male , Population Dynamics , Semen Analysis
11.
BMC Genomics ; 22(1): 728, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34625024

ABSTRACT

BACKGROUND: The seminal vesicles synthesise bioactive factors that support gamete function, modulate the female reproductive tract to promote implantation, and influence developmental programming of offspring phenotype. Despite the significance of the seminal vesicles in reproduction, their biology remains poorly defined. Here, to advance understanding of seminal vesicle biology, we analyse the mouse seminal vesicle transcriptome under normal physiological conditions and in response to acute exposure to the reproductive toxicant acrylamide. Mice were administered acrylamide (25 mg/kg bw/day) or vehicle control daily for five consecutive days prior to collecting seminal vesicle tissue 72 h following the final injection. RESULTS: A total of 15,304 genes were identified in the seminal vesicles with those encoding secreted proteins amongst the most abundant. In addition to reproductive hormone pathways, functional annotation of the seminal vesicle transcriptome identified cell proliferation, protein synthesis, and cellular death and survival pathways as prominent biological processes. Administration of acrylamide elicited 70 differentially regulated (fold-change ≥1.5 or ≤ 0.67) genes, several of which were orthogonally validated using quantitative PCR. Pathways that initiate gene and protein synthesis to promote cellular survival were prominent amongst the dysregulated pathways. Inflammation was also a key transcriptomic response to acrylamide, with the cytokine, Colony stimulating factor 2 (Csf2) identified as a top-ranked upstream driver and inflammatory mediator associated with recovery of homeostasis. Early growth response (Egr1), C-C motif chemokine ligand 8 (Ccl8), and Collagen, type V, alpha 1 (Col5a1) were also identified amongst the dysregulated genes. Additionally, acrylamide treatment led to subtle changes in the expression of genes that encode proteins secreted by the seminal vesicle, including the complement regulator, Complement factor b (Cfb). CONCLUSIONS: These data add to emerging evidence demonstrating that the seminal vesicles, like other male reproductive tract tissues, are sensitive to environmental insults, and respond in a manner with potential to exert impact on fetal development and later offspring health.


Subject(s)
Seminal Vesicles , Transcriptome , Acrylamide/toxicity , Animals , Cytokines , Female , Male , Mice , Reproduction/genetics
12.
Mol Cell Proteomics ; 20: 100107, 2021.
Article in English | MEDLINE | ID: mdl-34089863

ABSTRACT

Seminal vesicles are an integral part of the male reproductive accessory gland system. They produce a complex array of secretions containing bioactive constituents that support gamete function and promote reproductive success, with emerging evidence suggesting these secretions are influenced by our environment. Despite their significance, the biology of seminal vesicles remains poorly defined. Here, we complete the first proteomic assessment of mouse seminal vesicles and assess the impact of the reproductive toxicant acrylamide. Mice were administered acrylamide (25 mg/kg bw/day) or control daily for five consecutive days prior to collecting seminal vesicle tissue. A total of 5013 proteins were identified in the seminal vesicle proteome with bioinformatic analyses identifying cell proliferation, protein synthesis, cellular death, and survival pathways as prominent biological processes. Secreted proteins were among the most abundant, and several proteins are linked with seminal vesicle phenotypes. Analysis of the effect of acrylamide on the seminal vesicle proteome revealed 311 differentially regulated (FC ± 1.5, p ≤ 0.05, 205 up-regulated, 106 downregulated) proteins, orthogonally validated via immunoblotting and immunohistochemistry. Pathways that initiate protein synthesis to promote cellular survival were prominent among the dysregulated pathways, and rapamycin-insensitive companion of mTOR (RICTOR, p = 6.69E-07) was a top-ranked upstream driver. Oxidative stress was implicated as contributing to protein changes, with acrylamide causing an increase in 8-OHdG in seminal vesicle epithelial cells (fivefold increase, p = 0.016) and the surrounding smooth muscle layer (twofold increase, p = 0.043). Additionally, acrylamide treatment caused a reduction in seminal vesicle secretion weight (36% reduction, p = 0.009) and total protein content (25% reduction, p = 0.017). Together these findings support the interpretation that toxicant exposure influences male accessory gland physiology and highlights the need to consider the response of all male reproductive tract tissues when interpreting the impact of environmental stressors on male reproductive function.


Subject(s)
Acrylamide/toxicity , Environmental Pollutants/toxicity , Seminal Vesicles/drug effects , Animals , Environmental Exposure , Male , Mice , Proteome/drug effects , Proteomics , Seminal Vesicles/metabolism
13.
Hum Reprod ; 36(5): 1175-1185, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33532854

ABSTRACT

Assessments of sperm DNA damage are controversial because of perceived uncertainties over the relationship with pregnancy and the limited range of therapies available should positive results be returned. In this article, we highlight recent data supporting a chain of associations between oxidative stress in the male germ line, DNA damage in spermatozoa, defective DNA repair in the oocyte, the mutational load carried by the resulting embryo and the long-term health trajectory of the offspring. Any condition capable of generating oxidative damage in spermatozoa (age, obesity, smoking, prolonged abstinence, varicocele, chemical exposures, radiation etc.) is capable of influencing offspring health in this manner, creating a range of pathologies in the progeny including neuropsychiatric disorders and cancer. If sperm DNA damage is detected, there are several therapeutic interventions that can be introduced to improve DNA quality prior to the use of these cells in ART. We therefore argue that infertility specialists should be engaged in the diagnosis and remediation of sperm DNA damage as a matter of best practice, in order to minimize the risk of adverse health outcomes in children conceived using ART.


Subject(s)
Infertility, Male , Child , DNA Damage , Female , Humans , Infertility, Male/genetics , Infertility, Male/metabolism , Male , Oocytes , Oxidative Stress , Pregnancy , Spermatozoa/metabolism
14.
Mol Cell Endocrinol ; 526: 111193, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33610643

ABSTRACT

Evidence is presented for expression of the insulin receptor on the surface of mammalian spermatozoa as well as transcripts for the receptor substrate adaptor proteins (IRS1-4) needed to mediate insulin action. Exposure to this hormone resulted in insulin receptor phosphorylation (pTyr972), activation of AKT (pSer473) and the stimulation of sperm motility. Intriguingly, the male germ line is also shown to be capable of generating insulin, possessing the relevant mRNA transcript and expressing strong immunocytochemical signals for both insulin and C-peptide. Insulin could be released from the spermatozoa by sonication in a concentration-dependent manner but was not secreted in response to glucose, fructose or stimulation with progesterone. However, insulin release could be induced by factors present in human uterine lavages. Furthermore, the endometrium was also shown to possess the machinery for insulin production and action (mRNA, insulin, C-peptide, proprotein convertase and insulin receptor), releasing insulin into the uterine lumen prior to ovulation. These studies emphasize the fundamental importance of extra-pancreatic insulin in regulating the reproductive process, particularly in the support of spermatozoa on their perilous voyage to the site of fertilization.


Subject(s)
Insulin/biosynthesis , Pancreas/metabolism , Spermatozoa/cytology , Spermatozoa/metabolism , Animals , C-Peptide/metabolism , Cell Survival , Endometrium/metabolism , Epithelium/metabolism , Female , Germ Cells/metabolism , Humans , Insulin Receptor Substrate Proteins/metabolism , Insulin Secretion , Male , Mammals/metabolism , Mice , Protein Isoforms/metabolism , Rats , Receptor, Insulin/metabolism , Uterus/metabolism
15.
Free Radic Biol Med ; 164: 410-416, 2021 02 20.
Article in English | MEDLINE | ID: mdl-33482333

ABSTRACT

Oxidative stress generates a large amount of reactive oxygen species (ROS) and affects sperm quality via damaging sperm DNA and compromising the intracellular homeostasis in human spermatozoa. In assisted reproductive technology (ART), it is substantial to prevent spermatozoa from ROS attack. The pineal hormone melatonin has the natural antioxidant capacity and can scavenge ROS. To the best of our knowledge, however, there are presently no studies investigating if melatonin can protect human spermatozoa from heat-induced oxidative damage. Herein, we induced oxidative stress in human spermatozoa with heat treatment, and determined that melatonin could protect human spermatozoa from heat-induced oxidative stress. We first confirmed that heat stress-induced oxidative stress damaged human spermatozoa by decreasing sperm motility and viability. Furthermore, the pretreatment of human spermatozoa by melatonin was able to alleviate such damage by suppressing sperm mitochondrial ROS generation, increasing mitochondrial membrane potential, reducing the formation of the lipid peroxidation product, 4-HNE, and reducing sperm DNA damage and apoptosis. Collectively, these findings suggest that melatonin is useful as a potential treatment option for male infertility caused by heat-induced oxidative stress.


Subject(s)
Melatonin , Apoptosis , Heat-Shock Response , Humans , Lipid Peroxidation , Male , Melatonin/metabolism , Melatonin/pharmacology , Oxidative Stress , Reactive Oxygen Species/metabolism , Sperm Motility , Spermatozoa/metabolism
16.
Annu Rev Genet ; 54: 1-24, 2020 11 23.
Article in English | MEDLINE | ID: mdl-32663048

ABSTRACT

Spermatogonial stem cells (SSCs) are generally characterized by excellent DNA surveillance and repair, resulting in one of the lowest spontaneous mutation rates in the body. However, the barriers to mutagenesis can be overwhelmed under two sets of circumstances. First, replication errors may generate age-dependent mutations that provide the mutant cells with a selective advantage, leading to the clonal expansions responsible for dominant genetic diseases such as Apert syndrome and achondroplasia. The second mechanism centers on the vulnerability of the male germline to oxidative stress and the induction of oxidative DNA damage in spermatozoa. Defective repair of such oxidative damage in the fertilized oocyte results in the creation of mutations in the zygote that can influence the health and well-being of the offspring. A particular hot spot for such oxidative attack on chromosome 15 has been found to align with several mutations responsible for paternally mediated disease, including cancer, psychiatric disorders, and infertility.


Subject(s)
Genetic Diseases, Inborn/genetics , Mutation/genetics , Animals , Chromosomes, Human, Pair 15/genetics , DNA Damage/genetics , Humans , Male , Mutation Rate , Neoplasms/genetics , Oocytes/growth & development , Spermatozoa/growth & development
17.
Andrology ; 8(3): 532-534, 2020 05.
Article in English | MEDLINE | ID: mdl-32447841
18.
F S Rep ; 1(3): 176, 2020 Dec.
Article in English | MEDLINE | ID: mdl-34223240
19.
Antioxidants (Basel) ; 10(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396527

ABSTRACT

A prevalent cause of sperm dysfunction in male infertility patients is the overproduction of reactive oxygen species, an attendant increase in lipid peroxidation and the production of cytotoxic reactive carbonyl species such as 4-hydroxynonenal. Our previous studies have implicated arachidonate 15-lipoxygenase (ALOX15) in the production of 4-hydroxynonenal in developing germ cells. Here, we have aimed to develop a further mechanistic understanding of the lipoxygenase-lipid peroxidation pathway in human spermatozoa. Through pharmacological inhibition studies, we identified a protective role for phospholipase enzymes in the liberation of peroxidised polyunsaturated fatty acids from the human sperm membrane. Our results also revealed that arachidonic acid, linoleic acid and docosahexanoic acid are key polyunsaturated fatty acid substrates for ALOX15. Upon examination of ALOX15 in the spermatozoa of infertile patients compared to their normozoospermic counterparts, we observed significantly elevated levels of ALOX15 protein abundance in the infertile population and an increase in 4-hydroxynonenal adducts. Collectively, these data confirm the involvement of ALOX15 in the oxidative stress cascade of human spermatozoa and support the notion that increased ALOX15 abundance in sperm cells may accentuate membrane lipid peroxidation and cellular dysfunction, ultimately contributing to male infertility.

20.
Reproduction ; 159(4): R189-R201, 2020 04.
Article in English | MEDLINE | ID: mdl-31846434

ABSTRACT

Male and female germ lines are vulnerable to oxidative stress. In spermatozoa, such stress triggers a lipid peroxidation cascade that culminates in the generation of electrophilic lipid aldehydes that bind to DNA and a raft of proteins involved in the delivery of functionally competent cells. One set of targets for these aldehydes are the proteins of the mitochondrial electron transport chain. When this interaction occurs, mitochondrial ROS generation is enhanced leading to the sustained generation of oxidative damage in a self-perpetuating cycle. Such damage affects all aspects of sperm function including motility, sperm-egg recognition, acrosomal exocytosis and sperm-oocyte fusion. Oxidative stress in the male germ line also attacks the integrity of sperm DNA with potential impacts on the developmental capacity of embryos and the health and wellbeing of the offspring. Potential pathways of reactive oxygen species (ROS) generation in male germ cells could involve enhanced lipoxygenase activity, activation of NADPH oxidase and/or electron leakage from mitochondria. Similarly, in the female germ line, both the induction of oocyte senescence following ovulation and the deterioration of oocyte quality with maternal age appear to involve the generation of oxidative damage. In this case, the mitochondria appear to be a particularly important source of ROS compromising the viability and fertilizability of the oocyte and interfering with the normal segregation of chromosomes during meiosis. In light of these considerations, antioxidants should have some role to play in the preservation of reproductive function in both men and women; however, we still await appropriate trials to test this hypothesis.


Subject(s)
Infertility/etiology , Oocytes/metabolism , Oxidative Stress , Spermatozoa/metabolism , Antioxidants/therapeutic use , Female , Humans , Infertility/drug therapy , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...