Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Biosens Bioelectron ; 258: 116368, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38744114

ABSTRACT

Biosensing with biological field-effect transistors (bioFETs) is a promising technology toward specific, label-free, and multiplexed sensing in ultra-small samples. The current study employs the field-effect meta-nano-channel biosensor (MNC biosensor) for the detection of the enzyme N-acetyl-beta-D-glucosaminidase (NAGase), a biomarker for milk cow infections. The measurements are performed in a 0.5 µL drops of 3% commercial milk spiked with NAGase concentrations in the range of 30.3 aM-3.03 µM (Note that there is no background NAGase concentration in commercial milk). Specific and label-free sensing of NAGase is demonstrated with a limit-of-detection of 30.3 aM, a dynamic range of 11 orders of magnitude and with excellent linearity and sensitivity. Additional two important research outcomes are reported. First, the ionic strength of the examined milk is ∼120 mM which implies a bulk Debye screening length <1 nm. Conventionally, a 1 nm Debye length excludes the possibility of sensing with a recognition layer composed of surface bound anti-NAGase antibodies with a size of ∼10 nm. This apparent contradiction is removed considering the ample literature reporting antibody adsorption in a predominantly surface tilted configuration (side-on, flat-on, etc.). Secondly, milk contains a non-specific background protein concentration of 33 mg/ml, in addition to considerable amounts of micron-size heterogeneous fat structures. The reported sensing was performed without the customarily exercised surface blocking and without washing of the non-specific signal. This suggests that the role of non-specific adsorption to the BioFET sensing signal needs to be further evaluated. Control measurements are reported.


Subject(s)
Acetylglucosaminidase , Biosensing Techniques , Limit of Detection , Milk , Biosensing Techniques/methods , Milk/chemistry , Animals , Cattle , Acetylglucosaminidase/analysis , Osmolar Concentration , Transistors, Electronic , Equipment Design
2.
Nanoscale ; 16(13): 6648-6661, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38483160

ABSTRACT

Antibody-antigen interactions are shaped by the solution pH level, ionic strength, and electric fields, if present. In biological field-effect transistors (BioFETs), the interactions take place at the sensing area in which the pH level, ionic strength and electric fields are determined by the Poisson-Boltzmann equation and the boundary conditions at the solid-solution interface and the potential applied at the solution electrode. The present study demonstrates how a BioFET solution electrode potential affects the sensing area double layer pH level, ionic strength, and electric fields and in this way shapes the biological interactions at the sensing area. We refer to this as 'active sensing'. To this end, we employed the meta-nano-channel (MNC) BioFET and demonstrate how the solution electrode can determine the antibody-antigen equilibrium constant and allows the control and tuning of the sensing performance in terms of the dynamic range and limit-of-detection. In the current work, we employed this method to demonstrate the specific and label-free sensing of Alpha-Fetoprotein (AFP) molecules from 0.5 µL drops of 1 : 100 diluted serum. AFP was measured during pregnancy as part of the prenatal screening program for fetal anomalies, chromosomal abnormalities, and abnormal placentation. We demonstrate AFP sensing with a limit-of-detection of 10.5 aM and a dynamic range of 6 orders of magnitude in concentration. Extensive control measurements are reported.


Subject(s)
Biosensing Techniques , alpha-Fetoproteins , Biosensing Techniques/methods , Electrodes
3.
Molecules ; 29(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38202859

ABSTRACT

MolOptimizer is a user-friendly computational toolkit designed to streamline the hit-to-lead optimization process in drug discovery. MolOptimizer extracts features and trains machine learning models using a user-provided, labeled, and small-molecule dataset to accurately predict the binding values of new small molecules that share similar scaffolds with the target in focus. Hosted on the Azure web-based server, MolOptimizer emerges as a vital resource, accelerating the discovery and development of novel drug candidates with improved binding properties.


Subject(s)
Drug Design , Drug Discovery , Machine Learning
4.
Aging Cell ; 21(12): e13738, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36373957

ABSTRACT

Loss of proteostasis can occur due to mutations, the formation of aggregates, or general deficiency in the correct translation and folding of proteins. These phenomena are commonly observed in pathologies, but most significantly, loss of proteostasis characterizes aging. This loss leads to the chronic activation of stress responses and has a generally deleterious impact on the organism. While finding molecules that can alleviate these symptoms is an important step toward solutions for these conditions, some molecules might be mischaracterized on the way. 4-phenylbutyric acid (4PBA) is known for its role as a chemical chaperone that helps alleviate endoplasmic reticulum (ER) stress, yet a scan of the literature reveals that no biochemical or molecular experiments have shown any protein refolding capacity. Here, we show that 4PBA is a conserved weak inhibitor of mRNA translation, both in vitro and in cellular systems, and furthermore-it does not promote protein folding nor prevents aggregation. 4PBA possibly alleviates proteostatic or ER stress by inhibiting protein synthesis, allowing the cells to cope with misfolded proteins by reducing the protein load. Better understanding of 4PBA biochemical mechanisms will improve its usage in basic science and as a drug in different pathologies, also opening new venues for the treatment of different diseases.


Subject(s)
Endoplasmic Reticulum Stress , Phenylbutyrates , Phenylbutyrates/pharmacology , Proteostasis , Protein Folding , Unfolded Protein Response
5.
J Cheminform ; 14(1): 4, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35109921

ABSTRACT

In the era of data science, data-driven algorithms have emerged as powerful platforms that can consolidate bioisosteric rules for preferential modifications on small molecules with a common molecular scaffold. Here we present complementary data-driven algorithms to minimize the search in chemical space for phenylthiazole-containing molecules that bind the RNA hairpin within the ribosomal peptidyl transferase center (PTC) of Mycobacterium tuberculosis. Our results indicate visual, geometrical, and chemical features that enhance the binding to the targeted RNA. Functional validation was conducted after synthesizing 10 small molecules pinpointed computationally. Four of the 10 were found to be potent inhibitors that target hairpin 91 in the ribosomal PTC of M. tuberculosis and, as a result, stop translation.

6.
Nucleic Acids Res ; 49(20): 11447-11458, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34718733

ABSTRACT

DNA-protein interactions play essential roles in all living cells. Understanding of how features embedded in the DNA sequence affect specific interactions with proteins is both challenging and important, since it may contribute to finding the means to regulate metabolic pathways involving DNA-protein interactions. Using a massive experimental benchmark dataset of binding scores for DNA sequences and a machine learning workflow, we describe the binding to DNA of T7 primase, as a model system for specific DNA-protein interactions. Effective binding of T7 primase to its specific DNA recognition sequences triggers the formation of RNA primers that serve as Okazaki fragment start sites during DNA replication.


Subject(s)
DNA Primase/chemistry , DNA/chemistry , Nucleotide Motifs , Binding Sites , DNA/metabolism , DNA Primase/metabolism , Machine Learning , Protein Binding
7.
Chem Biol Drug Des ; 98(5): 722-732, 2021 11.
Article in English | MEDLINE | ID: mdl-34265158

ABSTRACT

Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium that caused 1.5 million fatalities globally in 2018. New strains of Mtb resistant to all known classes of antibiotics pose a global healthcare problem. In this work, we have conjugated novel indole-3-acetic acid-based DNA primase/gyrase inhibitor with cell-penetrating peptide via cleavable and non-cleavable bonds. For non-cleavable linkage, inhibitor was conjugated with peptide via an amide bond to the N-terminus, whereas a cleavable linkage was obtained by conjugating the inhibitor through a disulfide bond. We performed the conjugation of the inhibitor either directly on a solid surface or by using solution-phase chemistry. M. smegmatis (non-pathogenic model of Mtb) was used to determine the minimal inhibitory concentration (MIC) of the synthetic conjugates. Conjugates were found more active as compared to free inhibitor molecules. Strikingly, the conjugate also impairs the development of biofilm, showing a therapeutic potential against infections caused by both planktonic and sessile forms of mycobacterium species.


Subject(s)
Antitubercular Agents/chemistry , Cell-Penetrating Peptides/chemistry , DNA Primase/chemistry , Indoleacetic Acids/chemistry , Topoisomerase II Inhibitors/chemistry , Antitubercular Agents/pharmacology , Biofilms , DNA Primase/metabolism , Microbial Sensitivity Tests , Mycobacterium smegmatis/drug effects , Plankton , Topoisomerase II Inhibitors/metabolism
8.
Mol Ther Nucleic Acids ; 23: 527-535, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33510941

ABSTRACT

For antisense applications, oligonucleotides must be chemically modified to be resistant to endogenous nucleases. Until now, antisense oligonucleotide (ASO) analogs have been synthesized and then tested for their ability to duplex with a target nucleic acid, usually RNA. In this work, using molecular dynamics calculations simulations, we systematically tested a series of chemically modified analogs in which the 2-deoxyribose was substituted for by one or two methylene groups on each side of the phosphate backbone, producing four compounds, of which three were previously unknown. We used a 9-mer sequence of which the solution structure has been determined by NMR spectroscopy and tested the ability to form stable duplexes of these acyclic analogs to both DNA and RNA. In only one case out of eight, we unexpectedly found the formation of a stable duplex with complementary RNA. We also applied limitations on end fraying because of the terminal AT base pairs, in order to eliminate this as a factor in the comparative results. We consider this a predictive method to potentially identify target ASO analogs for synthesis and testing for antisense drug development.

9.
ACS Synth Biol ; 9(12): 3400-3407, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33186033

ABSTRACT

In vivo expression of metalloproteins requires specific metal trafficking and incorporation machinery inside the cell. Synthetic designed metalloproteins are typically purified without the target metal, which is subsequently introduced through in vitro reconstitution. The extra step complicates protein optimization by high-throughput library screening or laboratory evolution. We demonstrate that a designed coiled-coil iron-sulfur protein (CCIS) assembles robustly with [4Fe-4S] clusters in vivo. While in vitro reconstitution produces a mixture of oligomers that depends on solution conditions, in vivo production generates a stable homotrimer coordinating a single, diamagnetic [4Fe-4S]2+ cluster. The multinuclear cluster of in vivo assembled CCIS is more resistant to degradation by molecular oxygen. Only one of the two metal coordinating half-sites is required in vivo, indicating specificity of molecular recognition in recruitment of the metal cluster. CCIS, unbiased by evolution, is a unique platform to examine iron-sulfur protein biogenesis and develop synthetic multinuclear oxidoreductases.


Subject(s)
Iron-Sulfur Proteins/metabolism , Protein Engineering/methods , Amino Acid Motifs , Circular Dichroism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/genetics , Mutagenesis , Oxidoreductases/chemistry , Oxidoreductases/genetics , Oxidoreductases/metabolism , Protein Conformation, alpha-Helical
10.
Molecules ; 25(20)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096693

ABSTRACT

Receptor tyrosine kinases (RTKs) are major players in signal transduction, regulating cellular activities in both normal regeneration and malignancy. Thus, many RTKs, c-Kit among them, play key roles in the function of both normal and neoplastic cells, and as such constitute attractive targets for therapeutic intervention. We thus sought to manipulate the self-association of stem cell factor (SCF), the cognate ligand of c-Kit, and hence its suboptimal affinity and activation potency for c-Kit. To this end, we used directed evolution to engineer SCF variants having different c-Kit activation potencies. Our yeast-displayed SCF mutant (SCFM) library screens identified altered dimerization potential and increased affinity for c-Kit by specific SCF-variants. We demonstrated the delicate balance between SCF homo-dimerization, c-Kit binding, and agonistic potencies by structural studies, in vitro binding assays and a functional angiogenesis assay. Importantly, our findings showed that a monomeric SCF variant exhibited superior agonistic potency vs. the wild-type SCF protein and vs. other high-affinity dimeric SCF variants. Our data showed that action of the monomeric ligands in binding to the RTK monomers and inducing receptor dimerization and hence activation was superior to that of the wild-type dimeric ligand, which has a higher affinity to RTK dimers but a lower activation potential. The findings of this study on the binding and c-Kit activation of engineered SCF variants thus provides insights into the structure-function dynamics of ligands and RTKs.


Subject(s)
Proto-Oncogene Proteins c-kit/agonists , Stem Cell Factor/pharmacology , Cell Line, Tumor , Humans , Phosphorylation , Proto-Oncogene Proteins c-kit/metabolism , Stem Cell Factor/genetics
11.
Chemistry ; 26(47): 10849-10860, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32485035

ABSTRACT

Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium and a causative agent of tuberculosis (TB), a disease that kills more than 1.5 million people worldwide annually. One of the main reasons for this high mortality rate is the evolution of new Mtb strains that are resistant to available antibiotics. Therefore, new therapeutics for TB are in constant demand. Here, we report the development of small-molecule inhibitors that target two DNA replication enzymes of Mtb, namely DnaG primase and DNA gyrase (Gyr), which share a conserved TOPRIM fold near the inhibitors' binding site. The molecules were developed on the basis of previously reported inhibitors for T7 DNA primase that bind near the TOPRIM fold. To improve the physicochemical properties of the molecules as well as their inhibitory effect on primase and gyrase, 49 novel compounds have been synthesized as potential drug candidates in three stages of optimization. The last stage of chemical optimization yielded two novel inhibitors for both Mtb DnaG and Gyr that also showed inhibitory activity toward the fast-growing non-pathogenic model Mycobacterium smegmatis (Msmg).


Subject(s)
Antitubercular Agents/pharmacology , DNA Replication/drug effects , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , DNA Gyrase/metabolism , DNA Primase/antagonists & inhibitors , DNA Primase/metabolism , Humans , Mycobacterium tuberculosis/genetics , Tuberculosis/drug therapy , Tuberculosis/microbiology
12.
J Med Chem ; 63(14): 7601-7615, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32442375

ABSTRACT

The repertoire of methods for the detection and chemotherapeutic treatment of prostate cancer (PCa) is currently limited. Prostate-specific membrane antigen (PSMA) is overexpressed in PCa tumors and can be exploited for both imaging and drug delivery. We developed and characterized four nanobodies that present tight and specific binding and internalization into PSMA+ cells and that accumulate specifically in PSMA+ tumors. We then conjugated one of these nanobodies to the cytotoxic drug doxorubicin, and we show that the conjugate internalizes specifically into PSMA+ cells, where the drug is released and induces cytotoxic activity. In vivo studies show that the extent of tumor growth inhibition is similar when mice are treated with commercial doxorubicin and with a 42-fold lower amount of the nanobody-conjugated doxorubicin, attesting to the efficacy of the conjugated drug. These data highlight nanobodies as promising agents for the imaging of PCa tumors and for the targeted delivery of chemotherapeutic drugs.


Subject(s)
Glutamate Carboxypeptidase II/immunology , Immunoconjugates/therapeutic use , Membrane Glycoproteins/immunology , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/drug therapy , Single-Domain Antibodies/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Camelus , Doxorubicin/therapeutic use , Drug Liberation , Glutamate Carboxypeptidase II/metabolism , Humans , Immunoconjugates/immunology , Male , Membrane Glycoproteins/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice, Nude , Molecular Docking Simulation , Optical Imaging , Prostatic Neoplasms/pathology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/metabolism , Xenograft Model Antitumor Assays
13.
Int J Mol Sci ; 21(3)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32033217

ABSTRACT

Glucose levels inside solid tumors are low as compared with normal surrounding tissue, forcing tumor cells to reprogram their metabolism to adapt to such low glucose conditions. Unlike normal tissue, tumor cells experience glucose starvation, making the targeting of pathways supporting survival during glucose starvation an interesting therapeutic strategy in oncology. Using high-throughput screening, we previously identified small molecules that selectively kill cells exposed to glucose starvation. One of the identified compounds was the kinase inhibitor amuvatinib. To identify new molecules with potential antineoplastic activity, we procured 12 amuvatinib derivatives and tested their selective toxicity towards glucose-starved tumor cells. One of the amuvatinib derivatives, N-(2H-1,3-benzodioxol-5-yl)-4-{thieno[3,2-d]pyrimidin-4-yl}piperazine-1-carboxamide, termed compound 6, was found to be efficacious in tumor cells experiencing glucose starvation. In line with the known dependence of glucose-starved cells on the mitochondria, compound 6 inhibits mitochondrial membrane potential. These findings support the concept that tumor cells are dependent on mitochondria under glucose starvation, and bring forth compound 6 as a new molecule with potential antitumor activity for the treatment of glucose-starved tumors.


Subject(s)
Antineoplastic Agents/pharmacology , Glucose/metabolism , Mitochondria/drug effects , Neoplasms/drug therapy , Pyrimidines/pharmacology , Cell Line, Tumor , Humans , Membrane Potential, Mitochondrial/drug effects , Neoplasms/metabolism , Piperazines , Protein Kinase Inhibitors/pharmacology , Thiourea
14.
Elife ; 92020 01 29.
Article in English | MEDLINE | ID: mdl-31995034

ABSTRACT

DNA double-strand breaks (DSB) are the most deleterious type of DNA damage. In this work, we show that SIRT6 directly recognizes DNA damage through a tunnel-like structure that has high affinity for DSB. SIRT6 relocates to sites of damage independently of signaling and known sensors. It activates downstream signaling for DSB repair by triggering ATM recruitment, H2AX phosphorylation and the recruitment of proteins of the homologous recombination and non-homologous end joining pathways. Our findings indicate that SIRT6 plays a previously uncharacterized role as a DNA damage sensor, a critical factor in initiating the DNA damage response (DDR). Moreover, other Sirtuins share some DSB-binding capacity and DDR activation. SIRT6 activates the DDR before the repair pathway is chosen, and prevents genomic instability. Our findings place SIRT6 as a sensor of DSB, and pave the road to dissecting the contributions of distinct DSB sensors in downstream signaling.


DNA is a double-stranded molecule in which the two strands run in opposite directions, like the lanes on a two-lane road. Also like a road, DNA can be damaged by use and adverse conditions. Double-strand breaks ­ where both strands of DNA snap at once ­ are the most dangerous type of DNA damage, so cells have systems in place to rapidly detect and repair this kind of damage. There are three confirmed sensors for double-strand break in human cells. A fourth protein, known as SIRT6, arrives within five seconds of DNA damage, and was known to make the DNA more accessible so that it can be repaired. However, it was unclear whether SIRT6 could detect the double-strand break itself, or whether it was recruited to the damage by another double-strand break sensor. To address this issue, Onn et al. blocked the three other sensors in human cells and watched the response to DNA damage. Even when all the other sensors were inactive, SIRT6 still arrived at damaged DNA and activated the DNA damage response. To find out how SIRT6 sensed DNA damage, Onn et al. examined how purified SIRT6 interacts with different kinds of DNA. This revealed that SIRT6 sticks to broken DNA ends, especially if the end of one strand slightly overhangs the other ­ a common feature of double-strand breaks. A closer look at the structure of the SIRT6 protein revealed that it contains a narrow tube, which fits over the end of one broken DNA strand. When both strands break at once, two SIRT6 molecules cap the broken ends, joining together to form a pair. This pair not only protects the open ends of the DNA from further damage, it also sends signals to initiating repairs. In this way, SIRT6 could be thought of acting like a paramedic who arrives first on the scene of an accident and works to treat the injured while waiting for more specialized help to arrive. Understanding the SIRT6 sensor could improve knowledge about how cells repair their DNA. SIRT6 arrives before the cell chooses how to fix its broken DNA, so studying it further could reveal how that critical decision happens. This is important for medical research because DNA damage builds up in age-related diseases like cancer and neurodegeneration. In the long term, these findings can help us develop new treatments that target different types of DNA damage sensors.


Subject(s)
DNA Breaks, Double-Stranded , Sirtuins , Cell Line , DNA Repair , HeLa Cells , Humans , Protein Binding , Signal Transduction/genetics , Sirtuins/genetics , Sirtuins/metabolism , Sirtuins/physiology
15.
Chem Sci ; 10(38): 8764-8767, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31803448

ABSTRACT

M. tuberculosis (Mtb) is a pathogenic bacterium that causes tuberculosis, which kills more than 1.5 million people worldwide every year. Strains resistant to available antibiotics pose a significant healthcare problem. The enormous complexity of the ribosome poses a barrier for drug discovery. We have overcome this in a tractable way by using an RNA segment that represents the peptidyl transferase center as a target. By using a novel combination of NMR transverse relaxation times (T 2) and computational chemistry approaches, we have obtained improved inhibitors of the Mtb ribosomal PTC. Two phenylthiazole derivatives were predicted by machine learning models as effective inhibitors, and this was confirmed by their IC50 values, which were significantly improved over standard antibiotic drugs.

16.
J Vis Exp ; (152)2019 10 08.
Article in English | MEDLINE | ID: mdl-31657797

ABSTRACT

DNA primase synthesizes short RNA primers that initiate DNA synthesis of Okazaki fragments on the lagging strand by DNA polymerase during DNA replication. The binding of prokaryotic DnaG-like primases to DNA occurs at a specific trinucleotide recognition sequence. It is a pivotal step in the formation of Okazaki fragments. Conventional biochemical tools that are used to determine the DNA recognition sequence of DNA primase provide only limited information. Using a high-throughput microarray-based binding assay and consecutive biochemical analyses, it has been shown that 1) the specific binding context (flanking sequences of the recognition site) influences the binding strength of the DNA primase to its template DNA, and 2) stronger binding of primase to the DNA yields longer RNA primers, indicating higher processivity of the enzyme. This method combines PBM and primase activity assay and is designated as high-throughput primase profiling (HTPP), and it allows characterization of specific sequence recognition by DNA primase in unprecedented time and scalability.


Subject(s)
DNA Primase/metabolism , DNA/genetics , DNA/metabolism , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Binding Sites , DNA Replication , Protein Array Analysis , Protein Binding , RNA/biosynthesis
17.
Biosens Bioelectron ; 132: 143-161, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30870641

ABSTRACT

The importance of specific and label-free detection of proteins via antigen-antibody interactions for the development of point-of-care testing devices has greatly influenced the search for a more accessible, sensitive, low cost and robust sensors. The vision of silicon field-effect transistor (FET)-based sensors has been an attractive venue for addressing the challenge as it potentially offers a natural path to incorporate sensors with the existing mature Complementary Metal Oxide Semiconductor (CMOS) industry; this provides a stable and reliable technology, low cost for potential disposable devices, the potential for extreme minituarization, low electronic noise levels, etc. In the current review we focus on silicon-based immunological FET (ImmunoFET) for specific and label-free sensing of proteins through antigen-antibody interactions that can potentially be incorporated into the CMOS industry; hence, immunoFETs based on nano devices (nanowire, nanobelts, carbon nanotube, etc.) are not treated here. The first part of the review provides an overview of immunoFET principles of operation and challenges involved with the realization of such devices (i.e. e.g. Debye length, surface functionalization, noise, etc.). In the second part we provide an overview of the state-of-the-art silicon-based immunoFET structures and novelty, principles of operation and sensing performance reported to date.


Subject(s)
Biosensing Techniques/instrumentation , Immunoassay/instrumentation , Protein Interaction Mapping/instrumentation , Silicon/chemistry , Transistors, Electronic , Animals , Biosensing Techniques/methods , Equipment Design , Humans , Immunoassay/methods , Protein Interaction Mapping/methods
18.
iScience ; 2: 141-147, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-30428370

ABSTRACT

Primases are key enzymes involved in DNA replication. They act on single-stranded DNA and catalyze the synthesis of short RNA primers used by DNA polymerases. Here, we investigate the DNA binding and activity of the bacteriophage T7 primase using a new workflow called high-throughput primase profiling (HTPP). Using a unique combination of high-throughput binding assays and biochemical analyses, HTPP reveals a complex landscape of binding specificity and functional activity for the T7 primase, determined by sequences flanking the primase recognition site. We identified specific features, such as G/T-rich flanks, which increase primase-DNA binding up to 10-fold and, surprisingly, also increase the length of newly formed RNA (up to 3-fold). To our knowledge, variability in primer length has not been reported for this primase. We expect that applying HTPP to additional enzymes will reveal new insights into the effects of DNA sequence composition on the DNA recognition and functional activity of primases.

19.
Antibiotics (Basel) ; 7(3)2018 Aug 13.
Article in English | MEDLINE | ID: mdl-30104489

ABSTRACT

The bacterial primase-an essential component in the replisome-is a promising but underexploited target for novel antibiotic drugs. Bacterial primases have a markedly different structure than the human primase. Inhibition of primase activity is expected to selectively halt bacterial DNA replication. Evidence is growing that halting DNA replication has a bacteriocidal effect. Therefore, inhibitors of DNA primase could provide antibiotic agents. Compounds that inhibit bacterial DnaG primase have been developed using different approaches. In this paper, we provide an overview of the current literature on DNA primases as novel drug targets and the methods used to find their inhibitors. Although few inhibitors have been identified, there are still challenges to develop inhibitors that can efficiently halt DNA replication and may be applied in a clinical setting.

20.
Molecules ; 23(2)2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29370102

ABSTRACT

Fragment-based drug discovery (FBDD) using NMR has become a central approach over the last twenty years for development of small molecule inhibitors against biological macromolecules, to control a variety of cellular processes. Yet, several considerations should be taken into account for obtaining a therapeutically relevant agent. In this review, we aim to list the considerations that make NMR fragment screening a successful process for yielding potent inhibitors. Factors that may govern the competence of NMR in fragment based drug discovery are discussed, as well as later steps that involve optimization of hits obtained by NMR-FBDD.


Subject(s)
Computer Simulation , Drug Discovery , Magnetic Resonance Spectroscopy , Animals , Drug Discovery/methods , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Humans , Ligands , Magnetic Resonance Spectroscopy/methods , Nuclear Magnetic Resonance, Biomolecular , Quantitative Structure-Activity Relationship , Small Molecule Libraries
SELECTION OF CITATIONS
SEARCH DETAIL