Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Curr Biol ; 34(16): 3747-3762.e6, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39163829

ABSTRACT

The acentrosomal spindle apparatus has kinetochore fibers organized and converged toward opposite poles; however, mechanisms underlying the organization of these microtubule fibers into an orchestrated bipolar array were largely unknown. Kinesin-14D is one of the four classes of Kinesin-14 motors that are conserved from green algae to flowering plants. In Arabidopsis thaliana, three Kinesin-14D members displayed distinct cell cycle-dependent localization patterns on spindle microtubules in mitosis. Notably, Kinesin-14D1 was enriched on the midzone microtubules of prophase and mitotic spindles and later persisted in the spindle and phragmoplast midzones. The kinesin-14d1 mutant had kinetochore fibers disengaged from each other during mitosis and exhibited hypersensitivity to the microtubule-depolymerizing herbicide oryzalin. Oryzalin-treated kinesin-14d1 mutant cells had kinetochore fibers tangled together in collapsed spindle microtubule arrays. Kinesin-14D1, unlike other Kinesin-14 motors, showed slow microtubule plus end-directed motility, and its localization and function were dependent on its motor activity and the novel malectin-like domain. Our findings revealed a Kinesin-14D1-dependent mechanism that employs interpolar microtubules to regulate the organization of kinetochore fibers for acentrosomal spindle morphogenesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Kinesins , Microtubules , Spindle Apparatus , Arabidopsis/metabolism , Arabidopsis/genetics , Kinesins/metabolism , Kinesins/genetics , Microtubules/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Spindle Apparatus/metabolism , Mitosis , Morphogenesis , Kinetochores/metabolism , Dinitrobenzenes/pharmacology , Sulfanilamides/pharmacology
2.
Phys Med ; 120: 103323, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38461635

ABSTRACT

PURPOSE: We investigated interplay effects and treatment time (TT) in scanned proton therapy for lung cancer patients. We compared free-breathing (FB) approaches with multiple rescanning strategies and respiratory-gating (RG) methods with various gating widths to identify the superior irradiation technique. METHODS: Plans were created with 4/1, 2/2, and 1/4 layered/volume rescans of FB (L4V1, L2V2, and L1V4), and 50%, 30%, and 10% gating widths of the total respiratory curves (G50, G30, and G10) of the RG plans with L4V1. We calculated 4-dimensional dynamic doses assuming a constant sinusoidal curve for six irradiation methods. The reconstructed doses per fraction were compared with planned doses in terms of dose differences in 99% clinical-target-volume (CTV) (ΔD99%), near-maximum dose differences (ΔD2%) at organs-at-risk (OARs), and TT. RESULTS: The mean/minimum CTV ΔD99% values for FB were -1.0%/-4.9%, -0.8%/-4.3%, and -0.1%/-1.0% for L4V1, L2V2, and L1V4, respectively. Those for RG were -0.3%/-1.7%, -0.1%/-1.0%, and 0.0%/-0.5% for G50, G30, and G10, respectively. The CTV ΔD99% of the RGs with less than 50% gate width and the FBs of L1V4 were within the desired tolerance (±3.0%), and the OARs ΔD2% for RG were lower than those for FB. The mean TTs were 90, 326, 824, 158, 203, and 422 s for L4V1, L2V2, L1V4, G50, G30, and G10, respectively. CONCLUSIONS: FB (L4V1) is the most efficient treatment, but not necessarily the optimal choice due to interplay effects. To satisfy both TT extensions and interplay, RG with a gate width as large as possible within safety limits is desirable.


Subject(s)
Lung Neoplasms , Proton Therapy , Humans , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Respiration , Radiotherapy Dosage , Four-Dimensional Computed Tomography/methods
3.
Med Dosim ; 49(1): 13-18, 2024.
Article in English | MEDLINE | ID: mdl-37940436

ABSTRACT

This study evaluated the dose distributions of proton pencil beam scanning (PBS) with/without a multileaf collimator (MLC) compared to passive scattering (PS) for stage I/II lung cancers. Collimated/uncollimated (PBS+/PBS-) and PS plans were created for 20 patients. Internal-clinical-target-volumes (ICTVs) and planning-target-volumes (PTVs) with a 5 mm margin were defined on the gated CTs. Organs-at-risk (OARs) are defined as the normal lungs, spinal cord, esophagus, and heart. The prescribed dose was 66 Gy relative-biological-effectiveness (RBE) in 10 fractions at the isocenter and 50% volume of the ICTVs for the PS and PBS, respectively. We compared the target and OAR dose statistics from the dose volume histograms. The PBS+ group had a significantly better mean PTV conformity index than the PBS- and PS groups. The mean dose sparing for PBS+ was better than those for PBS- and PS. Only the normal lung doses of PBS- were worse than those of PS. The overall performance of the OAR sparing was in the order of PBS+, PBS-, and PS. The PBS+ plan showed significantly better target homogeneity and OAR sparing than the PBS- and PS plans. PBS requires collimating systems to treat lung cancers with the most OAR sparing while maintaining the target coverage.


Subject(s)
Lung Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Lung Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Organs at Risk
4.
Breed Sci ; 73(2): 95-107, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37404348

ABSTRACT

Sexuality is the main strategy for maintaining genetic diversity within a species. In flowering plants (angiosperms), sexuality is derived from ancestral hermaphroditism and multiple sexualities can be expressed in an individual. The mechanisms conferring chromosomal sex determination in plants (or dioecy) have been studied for over a century by both biologists and agricultural scientists, given the importance of this field for crop cultivation and breeding. Despite extensive research, the sex determining gene(s) in plants had not been identified until recently. In this review, we dissect plant sex evolution and determining systems, with a focus on crop species. We introduced classic studies with theoretical, genetic, and cytogenic approaches, as well as more recent research using advanced molecular and genomic techniques. Plants have undergone very frequent transitions into, and out of, dioecy. Although only a few sex determinants have been identified in plants, an integrative viewpoint on their evolutionary trends suggests that recurrent neofunctionalization events are potentially common, in a "scrap and (re)build" cycle. We also discuss the potential association between crop domestication and transitions in sexual systems. We focus on the contribution of duplication events, which are particularly frequent in plant taxa, as a trigger for the creation of new sexual systems.

5.
Mol Biol Evol ; 40(7)2023 07 03.
Article in English | MEDLINE | ID: mdl-37414545

ABSTRACT

Plants have evolved sex chromosomes independently in many lineages, and loss of separate sexes can also occur. In this study, we assembled a monoecious recently hexaploidized persimmon (Diospyros kaki), in which the Y chromosome has lost the maleness-determining function. Comparative genomic analysis of D. kaki and its dioecious relatives uncovered the evolutionary process by which the nonfunctional Y chromosome (or Ymonoecy) was derived, which involved silencing of the sex-determining gene, OGI, approximately 2 million years ago. Analyses of the entire X and Ymonoecy chromosomes suggested that D. kaki's nonfunctional male-specific region of the Y chromosome (MSY), which we call a post-MSY, has conserved some characteristics of the original functional MSY. Specifically, comparing the functional MSY in Diospyros lotus and the nonfunctional "post-MSY" in D. kaki indicated that both have been rapidly rearranged, mainly via ongoing transposable element bursts, resembling structural changes often detected in Y-linked regions, some of which can enlarge the nonrecombining regions. The recent evolution of the post-MSY (and possibly also MSYs in dioecious Diospyros species) therefore probably reflects these regions' ancestral location in a pericentromeric region, rather than the presence of male-determining genes and/or genes controlling sexually dimorphic traits.


Subject(s)
Diospyros , Diospyros/genetics , Y Chromosome , Sex Chromosomes/genetics
6.
DNA Res ; 30(5)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37326063

ABSTRACT

Frequent polyploidization events in plants have led to the establishment of many lineage-specific traits representing each species. Little is known about the genetic bases for these specific traits in polyploids, presumably due to plant genomic complexity and their difficulties in applying genetic approaches. Hexaploid Oriental persimmon (Diospyros kaki) has evolved specific fruit characteristics, including wide variations in fruit shapes and astringency. In this study, using whole-genome diploidized/quantitative genotypes from ddRAD-Seq data of 173 persimmon cultivars, we examined their population structures and potential correlations between their structural transitions and variations in nine fruit traits. The population structures of persimmon cultivars were highly randomized and not substantially correlated with the representative fruit traits focused on in this study, except for fruit astringency. With genome-wide association analytic tools considering polyploid alleles, we identified the loci associated with the nine fruit traits; we mainly focused on fruit-shape variations, which have been numerically characterized by principal component analysis of elliptic Fourier descriptors. The genomic regions that putatively underwent selective sweep exhibited no overlap with the loci associated with these persimmon-specific fruit traits. These insights will contribute to understanding the genetic mechanisms by which fruit traits are independently established, possibly due to polyploidization events.


Subject(s)
Diospyros , Diospyros/genetics , Fruit/genetics , Genome-Wide Association Study , Phenotype , Genotype
7.
Biomed Phys Eng Express ; 9(4)2023 06 30.
Article in English | MEDLINE | ID: mdl-37387419

ABSTRACT

Prompt x-ray imaging is a promising method for observing the beam shape from outside a subject. However, its distribution is different from dose distribution, and thus a comparison with the dose is required. Meanwhile, luminescence imaging of water is a possible method for imaging the dose distribution. Consequently, we performed simultaneous imaging of luminescence and prompt x-rays during irradiation by proton beams to compare the distributions between these two different imaging methods. Optical imaging of water was conducted with spot-scanning proton beams at clinical dose level during irradiation to a fluorescein (FS) water phantom set in a black box. Prompt x-ray imaging was also conducted simultaneously from outside the black box using a developed x-ray camera during proton beam irradiation to the phantom. We measured images of the luminescence of FS water and prompt x-rays for various types of proton beams, including pencil beams, spread-out Bragg peak (SOBP) beams, and clinically used therapy beams. After the imaging, ranges were estimated from FS water and prompt x-rays and compared with those calculated with a treatment planning system (TPS). We could measure the prompt x-ray and FS water images simultaneously for all types of proton beams. The ranges estimated from the FS water and those calculated with the TPS closely matched, within a difference of several mm. Similar range difference was found between the results estimated from prompt x-ray images and those calculated with the TPS. We confirmed that the simultaneous imaging of luminescence and prompt x-rays were possible during irradiation with spot-scanning proton beams at a clinical dose level. This method can be applied to range estimation as well as comparison with the dose for prompt x-ray imaging or other imaging methods used in therapy with various types of proton beams at a clinical dose level.


Subject(s)
Luminescence , Protons , X-Rays , Radiography , Fluorescein , Water
8.
Plant Cell Physiol ; 64(11): 1323-1330, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37225398

ABSTRACT

Deep neural network (DNN) techniques, as an advanced machine learning framework, have allowed various image diagnoses in plants, which often achieve better prediction performance than human experts in each specific field. Notwithstanding, in plant biology, the application of DNNs is still mostly limited to rapid and effective phenotyping. The recent development of explainable CNN frameworks has allowed visualization of the features in the prediction by a convolutional neural network (CNN), which potentially contributes to the understanding of physiological mechanisms in objective phenotypes. In this study, we propose an integration of explainable CNN and transcriptomic approach to make a physiological interpretation of a fruit internal disorder in persimmon, rapid over-softening. We constructed CNN models to accurately predict the fate to be rapid softening in persimmon cv. Soshu, only with photo images. The explainable CNNs, such as Gradient-weighted Class Activation Mapping (Grad-Class Activation Mapping (CAM)) and guided Grad-CAM, visualized specific featured regions relevant to the prediction of rapid softening, which would correspond to the premonitory symptoms in a fruit. Transcriptomic analyses to compare the featured regions of the predicted rapid-softening and control fruits suggested that rapid softening is triggered by precocious ethylene signal-dependent cell wall modification, despite exhibiting no direct phenotypic changes. Further transcriptomic comparison between the featured and non-featured regions in the predicted rapid-softening fruit suggested that premonitory symptoms reflected hypoxia and the related stress signals finally to induce ethylene signals. These results would provide a good example for the collaboration of image analysis and omics approaches in plant physiology, which uncovered a novel aspect of fruit premonitory reactions in the rapid-softening fate.


Subject(s)
Diospyros , Fruit , Humans , Diospyros/genetics , Intuition , Ethylenes/pharmacology , Gene Expression Profiling
9.
Phys Med ; 109: 102592, 2023 May.
Article in English | MEDLINE | ID: mdl-37084677

ABSTRACT

Prompt secondary electron bremsstrahlung X-ray (prompt X-ray) imaging using a low-energy X-ray camera is a promising method for observing a beam shape from outside the subject. However, such imaging has so far been conducted only for pencil beams without a multi-leaf collimator (MLC). The use of spread-out Bragg peak (SOBP) with an MLC may increase the scattered prompt gamma photons and decrease the contrast of the images of prompt X-rays. Consequently, we performed prompt X-ray imaging of SOBP beams formed with an MLC. This imaging was carried out in list mode during irradiation of SOBP beams to a water phantom. An X-ray camera with a 1.5-mm diameter as well as 4-mm-diameter pinhole collimators was used for the imaging. List mode data were sorted to obtain the SOBP beam images as well as energy spectra and time count rate curves. Due to the high background counts from the scattered prompt gamma photons penetrating the tungsten shield of the X-ray camera, the SOBP beam shapes were difficult to observe with a 1.5-mm-diameter pinhole collimator. With the 4-mm-diameter pinhole collimators, images of SOBP beam shapes at clinical dose levels could be obtained with the X-ray camera. The use of a 4-mm-diameter pinhole collimator attached to the X-ray camera is effective for prompt X-ray imaging with high sensitivity and low background counts. This approach makes it possible to image SOBP beams with an MLC when the counts are low and the background levels are high.


Subject(s)
Carbon , X-Rays , Radiography , Phantoms, Imaging , Ions
10.
Phys Med ; 109: 102587, 2023 May.
Article in English | MEDLINE | ID: mdl-37087865

ABSTRACT

PURPOSE: To evaluate the applicability of microdosimetric kinetic model (MKM) to helium-ion therapy by forming a spread-out Bragg peak (SOBP) of a helium-ion beam using the MKM developed for carbon-ion radiotherapy and confirming the predictions in biological experiments. METHODS: Using a ridge filter, a 90-mm wide SOBP for a 210 MeV/u helium-ion beam was created in a broad beam delivery system. The ridge filter was designed such that a uniform biological response was achieved with a cell survival rate of 7% over the SOBP region. Biological experiments were then performed using the SOBP beam in a human salivary gland (HSG) cell line to measure the cell survival rates. RESULTS: The biological responses were uniform in the SOBP region, as expected by the MKM; however, the mean of the measured cell survival rates was (11.2 ± 0.6) % in the SOBP region, which was 60% higher than the designed rate. When investigating the biological parameters of the HSG cell line used in the experiments, we found that they were altered slightly from the MKM parameters used for carbon-ion radiotherapy. The new ß parameter reproduced the measured survival rates within 6.5% in the SOBP region. CONCLUSION: We produced biologically uniform SOBP using MKM for carbon-ion radiotherapy. The measured survival rates in the SOBP region were higher than expected, and the survival rates were reproduced by modifying the MKM parameter. This study was limited to one SOBP, and further investigations are required to prove that MKM is generally applicable to helium-ion radiotherapy.


Subject(s)
Models, Chemical , Helium/chemistry , Ions/chemistry , Film Dosimetry , Kinetics
11.
Nat Plants ; 9(3): 393-402, 2023 03.
Article in English | MEDLINE | ID: mdl-36879018

ABSTRACT

Sex chromosome evolution is thought to be tightly associated with the acquisition and maintenance of sexual dimorphisms. Plant sex chromosomes have evolved independently in many lineages1,2 and can provide a powerful comparative framework to study this. We assembled and annotated genome sequences of three kiwifruit species (genus Actinidia) and uncovered recurrent sex chromosome turnovers in multiple lineages. Specifically, we observed structural evolution of the neo-Y chromosomes, which was driven via rapid bursts of transposable element insertions. Surprisingly, sexual dimorphisms were conserved in the different species studied, despite the fact that the partially sex-linked genes differ between them. Using gene editing in kiwifruit, we demonstrated that one of the two Y-chromosome-encoded sex-determining genes, Shy Girl, shows pleiotropic effects that can explain the conserved sexual dimorphisms. These plant sex chromosomes therefore maintain sexual dimorphisms through the conservation of a single gene, without a process involving interactions between separate sex-determining genes and genes for sexually dimorphic traits.


Subject(s)
Actinidia , Actinidia/genetics , Sex Chromosomes/genetics , Phenotype
12.
Plant J ; 115(1): 175-189, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36994645

ABSTRACT

In plants, variations in seed size and number are outcomes of different reproductive strategies. Both traits are often environmentally influenced, suggesting that a mechanism exists to coordinate these phenotypes in response to available maternal resources. Yet, how maternal resources are sensed and influence seed size and number is largely unknown. Here, we report a mechanism that senses maternal resources and coordinates grain size and number in the wild rice Oryza rufipogon, a wild progenitor of Asian cultivated rice. We showed that FT-like 9 (FTL9) regulates both grain size and number and that maternal photosynthetic assimilates induce FTL9 expression in leaves to act as a long-range signal that increases grain number and reduces size. Our findings highlight a strategy that benefits wild plants to survive in a fluctuating environment. In this strategy, when maternal resources are sufficient, wild plants increase their offspring number while preventing an increase in offspring size by the action of FTL9, which helps expand their habitats. In addition, we found that a loss-of-function allele (ftl9) is prevalent among wild and cultivated populations, offering a new scenario in the history of rice domestication.


Subject(s)
Edible Grain , Oryza , Edible Grain/genetics , Edible Grain/metabolism , Seeds/genetics , Phenotype , Plant Leaves/genetics , Domestication , Oryza/genetics , Oryza/metabolism
13.
J Appl Clin Med Phys ; 23(12): e13817, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36420959

ABSTRACT

This study aimed to evaluate the clinical beam commissioning results and lateral penumbra characteristics of our new pencil beam scanning (PBS) proton therapy using a multi-leaf collimator (MLC) calculated by use of a commercial Monte Carlo dose engine. Eighteen collimated uniform dose plans for cubic targets were optimized by the RayStation 9A treatment planning system (TPS), varying scan area, modulation widths, measurement depths, and collimator angles. To test the patient-specific measurements, we also created and verified five clinically realistic PBS plans with the MLC, such as the liver, prostate, base-of-skull, C-shape, and head-and-neck. The verification measurements consist of the depth dose (DD), lateral profile (LP), and absolute dose (AD). We compared the LPs and ADs between the calculation and measurements. For the cubic plans, the gamma index pass rates (γ-passing) were on average 96.5% ± 4.0% at 3%/3 mm for the DD and 95.2% ± 7.6% at 2%/2 mm for the LP. In several LP measurements less than 75 mm depths, the γ-passing deteriorated (increased the measured doses) by less than 90% with the scattering such as the MLC edge and range shifter. The deteriorated γ-passing was satisfied by more than 90% at 2%/2 mm using uncollimated beams instead of collimated beams except for three planes. The AD differences and the lateral penumbra width (80%-20% distance) were within ±1.9% and ± 1.1 mm, respectively. For the clinical plan measurements, the γ-passing of LP at 2%/2 mm and the AD differences were 97.7% ± 4.2% on average and within ±1.8%, respectively. The measurements were in good agreement with the calculations of both the cubic and clinical plans inserted in the MLC except for LPs less than 75 mm regions of some cubic and clinical plans. The calculation errors in collimated beams can be mitigated by substituting uncollimated beams.


Subject(s)
Proton Therapy , Humans , Radiotherapy Dosage , Phantoms, Imaging , Proton Therapy/methods , Lipopolysaccharides , Radiotherapy Planning, Computer-Assisted/methods , Monte Carlo Method
14.
Front Plant Sci ; 13: 918226, 2022.
Article in English | MEDLINE | ID: mdl-35909736

ABSTRACT

Peel degreening is the most conspicuous aspect of fruit ripening in many citrus fruits because of its importance for marketability. In this study, peel degreening in response to propylene (an ethylene analog) and at varying storage temperatures was characterized in Satsuma mandarin (Citrus unshiu Marc.) fruit. Propylene treatment triggered rapid peel degreening (within 4-6 days), indicated by an increase in the citrus color index (CCI) and chlorophyll loss. Peel degreening was also observed in fruit at 10°C and 15°C after 28-42 days, with gradual CCI increase and chlorophyll reduction. However, fruit at 5°C, 20°C, and 25°C remained green, and no substantial changes in peel CCI and chlorophyll content were recorded during the 42-day storage duration. The transcriptomes of peels of fruit treated with propylene for 4 days and those stored at varying temperatures for 28 days were then analyzed by RNA-Seq. We identified three categories of differentially expressed genes that were regulated by (i) propylene (and by analogy, ethylene) alone, (ii) low temperature (5°C, 10°C, or 15°C vs. 25°C) alone, and (iii) either propylene or low temperature. Gene-encoding proteins associated with chlorophyll degradation (such as CuSGR1, CuNOL, CuACD2, CuCAB2, and CuLHCB2) and a transcription factor (CuERF114) were differentially expressed by propylene or low temperature. To further examine temperature-induced pathways, we also monitored gene expression during on-tree fruit maturation vs. postharvest. The onset of on-tree peel degreening coincided with autumnal drops in field temperatures, and it was accompanied by differential expression of low temperature-regulated genes. On the contrary, genes that were exclusively regulated by propylene (such as CuCOPT1 and CuPOX-A2) displayed insignificant expression changes during on-tree peel degreening. These findings indicate that low temperatures could be involved in the fruit ripening-related peel degreening independently of ethylene.

15.
Curr Opin Plant Biol ; 69: 102255, 2022 10.
Article in English | MEDLINE | ID: mdl-35870416

ABSTRACT

Recent advances in the genomics of polyploid species answer some of the long-standing questions about the role of polyploidy in crop species. Here, we summarize the current literature to reexamine scenarios in which polyploidy played a role both before and after domestication. The prevalence of polyploidy can help to explain environmental robustness in agroecosystems. This review also clarifies the molecular basis of some agriculturally advantageous traits of polyploid crops, including yield increments in polyploid cotton via subfunctionalization, modification of a separated sexuality to selfing in polyploid persimmon via neofunctionalization, and transition to a selfing system via nonfunctionalization combined with epistatic interaction between duplicated S-loci. The rapid progress in genomics and genetics is discussed along with how this will facilitate functional studies of understudied polyploid crop species.


Subject(s)
Domestication , Genome, Plant , Crops, Agricultural/genetics , Genomics , Polyploidy
16.
Cancers (Basel) ; 14(8)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35454915

ABSTRACT

This study investigated variations in the relative biological effectiveness (RBE) values among various sarcoma and normal-tissue-derived cell lines (normal cell line) in proton beam and carbon-ion irradiations. We used a consistent protocol that specified the timing of irradiation after plating cells and detailed the colony formation assay. We examined the cell type dependence of RBE for proton beam and carbon-ion irradiations using four human sarcoma cell lines (MG63 osteosarcoma, HT1080 fibrosarcoma, SW872 liposarcoma, and SW1353 chondrosarcoma) and three normal cell lines (HDF human dermal fibroblast, hTERT-HME1 mammary gland, and NuLi-1 bronchus epithelium). The cells were irradiated with gamma rays, proton beams at the center of the spread-out Bragg peak, or carbon-ion beams at 54.4 keV/µm linear energy transfer. In all sarcoma and normal cell lines, the average RBE values in proton beam and carbon-ion irradiations were 1.08 ± 0.11 and 2.08 ± 0.36, which were consistent with the values of 1.1 and 2.13 used in current treatment planning systems, respectively. Up to 34% difference in the RBE of the proton beam was observed between MG63 and HT1080. Similarly, a 32% difference in the RBE of the carbon-ion beam was observed between SW872 and the other sarcoma cell lines. In proton beam irradiation, normal cell lines had less variation in RBE values (within 10%), whereas in carbon-ion irradiation, RBE values differed by up to 48% between hTERT-HME1 and NuLi-1. Our results suggest that specific dose evaluations for tumor and normal tissues are necessary for treatment planning in both proton and carbon-ion therapies.

17.
Nat Plants ; 8(3): 217-224, 2022 03.
Article in English | MEDLINE | ID: mdl-35301445

ABSTRACT

In flowering plants, different lineages have independently transitioned from the ancestral hermaphroditic state into and out of various sexual systems1. Polyploidizations are often associated with this plasticity in sexual systems2,3. Persimmons (the genus Diospyros) have evolved dioecy via lineage-specific palaeoploidizations. More recently, hexaploid D. kaki has established monoecy and also exhibits reversions from male to hermaphrodite flowers in response to natural environmental signals (natural hermaphroditism, NH), or to artificial cytokinin treatment (artificial hermaphroditism, AH). We sought to identify the molecular pathways underlying these polyploid-specific reversions to hermaphroditism. Co-expression network analyses identified regulatory pathways specific to NH or AH transitions. Surprisingly, the two pathways appeared to be antagonistic, with abscisic acid and cytokinin signalling for NH and AH, respectively. Among the genes common to both pathways leading to hermaphroditic flowers, we identified a small-Myb RADIALIS-like gene, named DkRAD, which is specifically activated in hexaploid D. kaki. Consistently, ectopic overexpression of DkRAD in two model plants resulted in hypergrowth of the gynoecium. These results suggest that production of hermaphrodite flowers via polyploidization depends on DkRAD activation, which is not associated with a loss-of-function within the existing sex determination pathway, but rather represents a new path to (or reinvention of) hermaphroditism.


Subject(s)
Diospyros , Disorders of Sex Development , Magnoliopsida , Diospyros/genetics , Flowers/genetics , Polyploidy
18.
Plant Cell ; 34(6): 2174-2187, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35258588

ABSTRACT

In the evolutionary history of plants, variation in cis-regulatory elements (CREs) resulting in diversification of gene expression has played a central role in driving the evolution of lineage-specific traits. However, it is difficult to predict expression behaviors from CRE patterns to properly harness them, mainly because the biological processes are complex. In this study, we used cistrome datasets and explainable convolutional neural network (CNN) frameworks to predict genome-wide expression patterns in tomato (Solanum lycopersicum) fruit from the DNA sequences in gene regulatory regions. By fixing the effects of trans-acting factors using single cell-type spatiotemporal transcriptome data for the response variables, we developed a prediction model for crucial expression patterns in the initiation of tomato fruit ripening. Feature visualization of the CNNs identified nucleotide residues critical to the objective expression pattern in each gene, and their effects were validated experimentally in ripening tomato fruit. This cis-decoding framework will not only contribute to the understanding of the regulatory networks derived from CREs and transcription factor interactions, but also provides a flexible means of designing alleles for optimized expression.


Subject(s)
Deep Learning , Solanum lycopersicum , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Regulatory Sequences, Nucleic Acid , Transcription Factors/genetics , Transcription Factors/metabolism
19.
Commun Biol ; 5(1): 67, 2022 01 19.
Article in English | MEDLINE | ID: mdl-35046494

ABSTRACT

Proper anther and pollen development are important for plant reproduction. The plant hormone gibberellin is important for anther development in rice, but its gametophytic functions remain largely unknown. Here, we report the functional and evolutionary analyses of rice gibberellin 3-oxidase 1 (OsGA3ox1), a gibberellin synthetic enzyme specifically expressed in the late developmental stages of anthers. Enzymatic and X-ray crystallography analyses reveal that OsGA3ox1 has a higher GA7 synthesis ratio than OsGA3ox2. In addition, we generate an osga3ox1 knockout mutant by genome editing and demonstrate the bioactive gibberellic acid synthesis by the OsGA3ox1 action during starch accumulation in pollen via invertase regulation. Furthermore, we analyze the evolution of Oryza GA3ox1s and reveal that their enzyme activity and gene expression have evolved in a way that is characteristic of the Oryza genus and contribute to their male reproduction ability.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Plant , Mixed Function Oxygenases/genetics , Oryza/genetics , Plant Proteins/genetics , Genes, Plant , Mixed Function Oxygenases/metabolism , Oryza/enzymology , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL