Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Virol ; 95(23): e0125921, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34523962

ABSTRACT

Although mutant-specific T cells are elicited in some individuals infected with HIV-1 mutant viruses, the detailed characteristics of these T cells remain unknown. A recent study showed that the accumulation of strains expressing Nef135F, which were selected by HLA-A*24:02-restricted T cells, was associated with poor outcomes in individuals with the detrimental HLA-B*35:01 allele and that HLA-B*35:01-restricted NefYF9 (Nef135-143)-specific T cells failed to recognize target cells infected with Nef135F mutant viruses. Here, we investigated HLA-B*35:01-restricted T cells specific for the NefFF9 epitope incorporating the Nef135F mutation. Longitudinal T-cell receptor (TCR) clonotype analysis demonstrated that 3 types of HLA-B*35:01-restricted T cells (wild-type [WT] specific, mutant specific, and cross-reactive) with different T cell repertoires were elicited during the clinical course. HLA-B*35:01+ individuals possessing wild-type-specific T cells had a significantly lower plasma viral load (pVL) than those with mutant-specific and/or cross-reactive T cells, even though the latter T cells effectively recognized the mutant virus-infected cells. These results suggest that mutant-specific and cross-reactive T cells could only partially suppress HIV-1 replication in vivo. An ex vivo analysis of the T cells showed higher expression of PD-1 on cross-reactive T cells and lower expression of CD160/2B4 on the mutant-specific T cells than other T cells, implying that these inhibitory and stimulatory molecules are key to the reduced function of these T cells. In the present study, we demonstrate that mutant-specific and cross-reactive T cells do not contribute to the suppression of HIV-1 replication in HIV-1-infected individuals, even though they have the capacity to recognize mutant virus-infected cells. Thus, the collaboration of HLA-A*24:02 with the detrimental allele HLA-B*35:01 resulted in the coevolution of HIV-1 alongside virus-specific T cells, leading to poorer clinical outcomes. IMPORTANCE HIV-1 escape mutations are selected under pressure from HIV-1-specific CD8+ T cells. Accumulation of these mutations in circulating viruses impairs the control of HIV-1 by HIV-1-specific T cells. Although it is known that HIV-1-specific T cells recognizing mutant virus were elicited in some individuals infected with a mutant virus, the role of these T cells remains unclear. Accumulation of phenylalanine at HIV-1 Nef135 (Nef135F), which is selected by HLA-A*24:02-restricted T cells, led to poor clinical outcome in individuals carrying the detrimental HLA-B*35:01 allele. In the present study, we found that HLA-B*35:01-restricted mutant-specific and cross-reactive T cells were elicited in HLA-B*35:01+ individuals infected with the Nef135F mutant virus. These T cells could not effectively suppress HIV-1 replication in vivo even though they could recognize mutant virus-infected cells in vitro. Mutant-specific and cross-reactive T cells expressed lower levels of stimulatory molecules and higher levels of inhibitory molecules, respectively, suggesting a potential mechanism whereby these T cells fail to suppress HIV-1 replication in HIV-1-infected individuals.


Subject(s)
Alleles , HIV-1/genetics , HLA-A24 Antigen/chemistry , HLA-A24 Antigen/metabolism , HLA-B35 Antigen/chemistry , HLA-B35 Antigen/metabolism , CD8-Positive T-Lymphocytes , Cross-Sectional Studies , Epitopes, T-Lymphocyte/genetics , HIV Infections/virology , HLA-A24 Antigen/genetics , HLA-B Antigens/chemistry , HLA-B Antigens/genetics , HLA-B35 Antigen/genetics , Humans , Mutation , Viral Load
2.
J Virol ; 95(16): e0069921, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34076478

ABSTRACT

Functional HIV-1-specific CD8+ T cells primed from naive T cells are expected to act as effector T cells in a "shock-and-kill" therapeutic strategy for an HIV-1 cure since less functional HIV-1-specific CD8+ T cells are elicited from memory T cells in HIV-1-infected individuals on combined antiretroviral therapy (cART). CD8+ T cells specific for HIV-1 conserved and protective epitopes are candidates for such T cells. We investigated the priming with STING ligand of CD8+ T cells specific for HLA-B*52:01 or HLA-C*12:02-restricted protective epitopes from naive T cells. STING ligand 3'3'-cGAMP effectively primed CD8+ T cells specific for 3 of 4 HLA-B*52:01-restricted epitopes but failed to prime those specific for all 3 HLA-C*12:02-restricted epitopes from the naive T cells of HIV-1-uninfected individuals having an HLA-B*52:01-C*12:02 protective haplotype. These HLA-B*52:01-restricted CD8+ T cells had a strong ability to suppress HIV-1 replication and expressed a high level of cytolytic effector molecules. The viral suppression ability of these T cells was significantly correlated with the expression level of perforin and showed a trend for a positive correlation with the expression level of CD107a. The present study highlighted the priming with STING ligand of functional CD8+ T cells specific for protective epitopes, which T cells would contribute as effector T cells to a shock-and-kill therapy. IMPORTANCE The current "shock-and-kill" therapeutic strategy for HIV cure has been directed toward eliminating latent viral reservoirs by reactivation of latent reservoirs with latency-reversing agents followed by eradication of these cells by immune-mediated responses. Although HIV-1-specific T cells are expected to eradicate viral reservoirs, the function of these T cells is reduced in HIV-1-infected individuals with long-term cART. Therefore, priming of HIV-1-specific T cells with high function from naive T cells is to be expected in these individuals. In this study, we demonstrated the priming with STING ligand 3'3'-cGAMP of CD8+ T cells specific for HIV-1-protective epitopes from naive T cells. cGAMP primed CD8+ T cells specific for 3 HLA-B*52:01-restricted protective epitopes, which cells expressed a high level of cytolytic effector molecules and effectively suppressed HIV-1 replication. The present study suggested that the priming with STING ligand of functional CD8+ T cells specific for protective epitopes would be useful in a therapy for an HIV-1 cure.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , HIV-1/immunology , Nucleotides, Cyclic/immunology , CD8-Positive T-Lymphocytes/metabolism , Granzymes/metabolism , HIV Infections/immunology , HIV Infections/therapy , HIV Infections/virology , HIV Seronegativity/immunology , HLA-B52 Antigen/immunology , HLA-C Antigens/immunology , Humans , Ligands , Membrane Proteins/immunology , Perforin/metabolism , Virus Replication/immunology
3.
J Virol ; 95(6)2021 02 24.
Article in English | MEDLINE | ID: mdl-33361435

ABSTRACT

The Gag280 mutation is associated with HLA-C*01:02 but not with HLA-B*52:01 in subtype A/E-infected individuals, whereas this mutation is associated with HLA-B*52:01 but not with HLA-C*01:02 in subtype B infections. Although it is known that the Gag280 mutant is selected by HLA-B*52:01-restricted GagRI8 (Gag275-282)-specific T cells in subtype B infections, it remains unknown why this Gag280 mutation is associated with HLA-C*01:02 rather than HLA-B*52:01 in subtype A/E infections. The subtype B and A/E viruses have different consensus sequence, with Thr and Val at Gag280, respectively. To clarify the effect of this difference in Gag280 consensus sequence, we investigated the role of HLA-C*01:02-restricted GagYI9 (Gag277-285)-specific T cells in selection of Gag280 mutations in subtype A/E-infected Vietnamese and subtype B-infected Japanese individuals. GagYI9-4V-specific T cells, which were frequently elicited in Vietnamese individuals infected with the consensus-type A/E virus, failed to recognize GagV280T mutant A/E virus-infected cells. GagYI9-4T mutant epitope-specific T cells, which were weakly elicited in individuals infected with the mutant A/E virus, had weak or no ability to recognize the mutant virus. These results account for the mechanism for selection and accumulation of GagV280T mutants in the case of subtype A/E infections. In contrast, HLA-C*01:02-restricted GagYI9-4T-specific T cells were weakly elicited in Japanese individuals infected with the subtype B virus, explaining why HLA-C*01:02-restricted Gag280 mutations are not accumulated in the case of a subtype B infection. The present study demonstrated that a difference in the Gag280 consensus sequence influenced the elicitation of the GagYI9-specific T cells involved in the accumulation of HLA-C*01:02-associated Gag280 mutations.IMPORTANCE HIV-1 mutations escaped from HIV-specific CD8+ T cells are mostly detected as HLA-associated mutations. A diversity of HLA-associated mutations is somewhat distinct to each race and region, since HLA allele distribution differs among them. A difference in the consensus sequence among HIV-1 subtypes may also influence the diversity of HLA-associated mutations. HLA-C*01:02-associated GagV280T and HLA-B*52:01-associated GagT280A/S mutations were previously identified in HIV-1 subtype A/E-infected and subtype B-infected individuals, respectively, though these subtype viruses have a different consensus sequence at Gag280. We demonstrated that the GagV280T mutant virus was selected by HLA-C*01:02-restricted GagYI9-4V-specific T cells in subtype A/E-infected Vietnamese but that HLA-C*01:02-restricted GagYI9-4T-specific T cells were weakly elicited in subtype B-infected Japanese. Together with our recent study which demonstrated the mechanism for the accumulation of HLA-B*52:01-associated mutations, we clarified the mechanism for the accumulation of different Gag280 mutations and the effect of the difference in the consensus sequence on the accumulation of escape mutations.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Genes, gag/genetics , HIV Infections/immunology , HIV-1/genetics , Immune Evasion/genetics , Asian People , Consensus Sequence , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , HIV Infections/virology , HIV-1/immunology , HLA-B Antigens/genetics , HLA-B Antigens/immunology , HLA-C Antigens/genetics , HLA-C Antigens/immunology , Humans , Mutation , T-Lymphocytes, Cytotoxic/immunology , Virus Replication
4.
AIDS ; 35(1): 33-43, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33031103

ABSTRACT

OBJECTIVE: The mechanism explaining the role of detrimental HLA alleles in HIV-1 infections has been investigated in very few studies. HLA-A*29:01-B*07:05-C*15:05 is a detrimental haplotype in HIV-1 subtype A/E-infected Vietnamese individuals. The accumulation of mutations at Pol 653/657 is associated with a poor clinical outcome in these individuals. However, the detrimental HLA allele and the mechanism responsible for its detrimental effect remains unknown. Therefore, in this current study we identified the detrimental HLA allele and investigated the mechanism responsible for the detrimental effect. DESIGN AND METHODS: A T-cell epitope including Pol 653/657 and its HLA restriction were identified by using overlapping HIV-1 peptides and cell lines expressing a single HLA. The effect of the mutations on the T-cell recognition of HIV-1-infected cells was investigated by using target cells infected with the mutant viruses. The effect of these mutations on the clinical outcome was analyzed in 74 HLA-C*15:05 Vietnamese infected with the subtype A/E virus. RESULTS: We identified HLA-C*15:05-restricted SL9 epitope including Pol 653/657. PolS653A/T/L mutations within this epitope critically impaired the T-cell recognition of HIV-1-infected cells, indicating that these mutations had escaped from the T cells. T-cell responders infected with these mutants showed significantly lower CD4 T-cell counts than those with the wild-type virus or Pol S653K/Q mutants, which are not associated with HLA-C*15:05. CONCLUSION: The accumulation of Pol S653A/T/L escape mutants critically affected the control of HIV-1 by SL9-specific T cells and led to a poor clinical outcome in the subtype A/E-infected individuals having the detrimental HLA-C*15:05 allele.


Subject(s)
HIV Infections , HIV-1 , Adult , Alleles , Epitopes, T-Lymphocyte/genetics , Female , HIV Infections/genetics , HIV-1/genetics , HLA-C Antigens/genetics , Humans , Male , Mutation , T-Lymphocytes, Cytotoxic/immunology
5.
PLoS Pathog ; 16(12): e1009177, 2020 12.
Article in English | MEDLINE | ID: mdl-33370400

ABSTRACT

HIV-1 strains harboring immune escape mutations can persist in circulation, but the impact of selection by multiple HLA alleles on population HIV-1 dynamics remains unclear. In Japan, HIV-1 Reverse Transcriptase codon 135 (RT135) is under strong immune pressure by HLA-B*51:01-restricted and HLA-B*52:01-restricted T cells that target a key epitope in this region (TI8; spanning RT codons 128-135). Major population-level shifts have occurred at HIV-1 RT135 during the Japanese epidemic, which first affected hemophiliacs (via imported contaminated blood products) and subsequently non-hemophiliacs (via domestic transmission). Specifically, threonine accumulated at RT135 (RT135T) in hemophiliac and non-hemophiliac HLA-B*51:01+ individuals diagnosed before 1997, but since then RT135T has markedly declined while RT135L has increased among non-hemophiliac individuals. We demonstrated that RT135V selection by HLA-B*52:01-restricted TI8-specific T-cells led to the creation of a new HLA-C*12:02-restricted epitope TN9-8V. We further showed that TN9-8V-specific HLA-C*12:02-restricted T cells selected RT135L while TN9-8T-specific HLA-C*12:02-restricted T cells suppressed replication of the RT135T variant. Thus, population-level accumulation of the RT135L mutation over time in Japan can be explained by initial targeting of the TI8 epitope by HLA-B*52:01-restricted T-cells, followed by targeting of the resulting escape mutant by HLA-C*12:02-restricted T-cells. We further demonstrate that this phenomenon is particular to Japan, where the HLA-B*52:01-C*12:02 haplotype is common: RT135L did not accumulate over a 15-year longitudinal analysis of HIV sequences in British Columbia, Canada, where this haplotype is rare. Together, our observations reveal that T-cell responses to sequentially emerging viral escape mutants can shape long-term HIV-1 population dynamics in a host population-specific manner.


Subject(s)
Antigenic Variation/immunology , HIV Infections , HIV-1 , Immune Evasion/genetics , T-Lymphocytes, Cytotoxic/immunology , Cells, Cultured , Clonal Evolution/immunology , Epitopes, T-Lymphocyte/genetics , HIV Infections/immunology , HIV Infections/virology , HIV Seropositivity , HIV-1/classification , HIV-1/genetics , HIV-1/immunology , HeLa Cells , Host Adaptation/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Molecular Typing , Mutation , T-Lymphocytes, Cytotoxic/metabolism , Viral Load/immunology , Virus Replication/genetics , Virus Replication/immunology
6.
J Virol ; 94(19)2020 09 15.
Article in English | MEDLINE | ID: mdl-32699092

ABSTRACT

The accumulation of HIV-1 escape mutations affects HIV-1 control by HIV-1-specific T cells. Some of these mutations can elicit escape mutant-specific T cells, but it still remains unclear whether they can suppress the replication of HIV-1 mutants. It is known that HLA-B*52:01-restricted RI8 (Gag 275 to 282; RMYSPTSI) is a protective T cell epitope in HIV-1 subtype B-infected Japanese individuals, though 3 Gag280A/S/V mutations are found in 26% of them. Gag280S and Gag280A were HLA-B*52:01-associated mutations, whereas Gag280V was not, implying a different mechanism for the accumulation of Gag280 mutations. In this study, we investigated the coevolution of HIV-1 with RI8-specific T cells and suppression of HIV-1 replication by its escape mutant-specific T cells both in vitro and in vivo HLA-B*52:01+ individuals infected with Gag280A/S mutant viruses failed to elicit these mutant epitope-specific T cells, whereas those with the Gag280V mutant one effectively elicited RI8-6V mutant-specific T cells. These RI8-6V-specific T cells suppressed the replication of Gag280V virus and selected wild-type virus, suggesting a mechanism affording no accumulation of the Gag280V mutation in the HLA-B*52:01+ individuals. The responders to wild-type (RI8-6T) and RI8-6V mutant peptides had significantly higher CD4 counts than nonresponders, indicating that the existence of not only RI8-6T-specific T cells but also RI8-6V-specific ones was associated with a good clinical outcome. The present study clarified the role of escape mutant-specific T cells in HIV-1 evolution and in the control of HIV-1.IMPORTANCE Escape mutant-specific CD8+ T cells were elicited in some individuals infected with escape mutants, but it is still unknown whether these CD8+ T cells can suppress HIV-1 replication. We clarified that Gag280V mutation were selected by HLA-B*52:01-restricted CD8+ T cells specific for the GagRI8 protective epitope, whereas the Gag280V virus could frequently elicit GagRI8-6V mutant-specific CD8+ T cells. GagRI8-6V mutant-specific T cells had a strong ability to suppress the replication of the Gag280V mutant virus both in vitro and in vivo In addition, these T cells contributed to the selection of wild-type virus in HLA-B*52:01+ Japanese individuals. We for the first time demonstrated that escape mutant-specific CD8+ T cells can suppress HIV-1 replication and play an important role in the coevolution with HIV-1. Thus, the present study highlighted an important role of escape mutant-specific T cells in the control of HIV-1 and coevolution with HIV-1.


Subject(s)
HIV-1/genetics , HIV-1/immunology , T-Lymphocytes/immunology , Virus Replication/physiology , CD8-Positive T-Lymphocytes , Cell Line , Epitopes, T-Lymphocyte/genetics , HIV Infections/virology , HLA-B Antigens/genetics , Humans , Mutation
7.
Vaccines (Basel) ; 8(2)2020 May 29.
Article in English | MEDLINE | ID: mdl-32485938

ABSTRACT

Sub-Saharan Africa carries the biggest burden of the human immunodeficiency virus type 1 (HIV-1)/AIDS epidemic and is in an urgent need of an effective vaccine. CD8+ T cells are an important component of the host immune response to HIV-1 and may need to be harnessed if a vaccine is to be effective. CD8+ T cells recognize human leukocyte antigen (HLA)-associated viral epitopes and the HLA alleles vary significantly among different ethnic groups. It follows that definition of HIV-1-derived peptides recognized by CD8+ T cells in the geographically relevant regions will critically guide vaccine development. Here, we study fine details of CD8+ T-cell responses elicited in HIV-1/2-uninfected individuals in Nairobi, Kenya, who received a candidate vaccine delivering conserved regions of HIV-1 proteins called HIVconsv. Using 10-day cell lines established by in vitro peptide restimulation of cryopreserved PBMC and stably HLA-transfected 721.221/C1R cell lines, we confirm experimentally many already defined epitopes, for a number of epitopes we define the restricting HLA molecule(s) and describe four novel HLA-epitope pairs. We also identify specific dominance patterns, a promiscuous T-cell epitope and a rescue of suboptimal T-cell epitope induction in vivo by its functional variant, which all together inform vaccine design.

8.
J Virol ; 94(12)2020 06 01.
Article in English | MEDLINE | ID: mdl-32295903

ABSTRACT

Cell entry by HIV-1 is mediated by its principal receptor, CD4, and a coreceptor, either CCR5 or CXCR4, with viral envelope glycoprotein gp120. Generally, CCR5-using HIV-1 variants, called R5, predominate over most of the course of infection, while CXCR4-using HIV-1 variants (variants that utilize both CCR5 and CXCR4 [R5X4, or dual] or CXCR4 alone [X4]) emerge at late-stage infection in half of HIV-1-infected individuals and are associated with disease progression. Although X4 variants also appear during acute-phase infection in some cases, these variants apparently fall to undetectable levels thereafter. In this study, replication-competent X4 variants were isolated from plasma of drug treatment-naive individuals infected with HIV-1 strain CRF01_AE, which dominantly carries viral RNA (vRNA) of R5 variants. Next-generation sequencing (NGS) confirmed that sequences of X4 variants were indeed present in plasma vRNA from these individuals as a minor population. On the other hand, in one individual with a mixed infection in which X4 variants were dominant, only R5 replication-competent variants were isolated from plasma. These results indicate the existence of replication-competent variants with different coreceptor usage as minor populations.IMPORTANCE The coreceptor switch of HIV-1 from R5 to CXCR4-using variants (R5X4 or X4) has been observed in about half of HIV-1-infected individuals at late-stage infection with loss of CD4 cell count and disease progression. However, the mechanisms that underlie the emergence of CXCR4-using variants at this stage are unclear. In the present study, CXCR4-using X4 variants were isolated from plasma samples of HIV-1-infected individuals that dominantly carried vRNA of R5 variants. The sequences of the X4 variants were detected as a minor population using next-generation sequencing. Taken together, CXCR4-using variants at late-stage infection are likely to emerge when replication-competent CXCR4-using variants are maintained as a minor population during the course of infection. The present study may support the hypothesis that R5-to-X4 switching is mediated by the expansion of preexisting X4 variants in some cases.


Subject(s)
HIV Infections/immunology , HIV-1/genetics , Receptors, CCR5/genetics , Receptors, CXCR4/genetics , Receptors, HIV/immunology , Adult , Aged , Amino Acid Sequence , CD4 Lymphocyte Count , Coinfection , Disease Progression , Female , Gene Expression Regulation , HIV Infections/genetics , HIV Infections/virology , HIV-1/classification , HIV-1/immunology , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Male , Middle Aged , Phylogeny , Protein Binding , RNA, Viral/genetics , RNA, Viral/immunology , Receptors, CCR5/immunology , Receptors, CXCR4/immunology , Receptors, HIV/genetics , Viral Tropism/genetics , Viral Tropism/immunology , Virus Attachment , Virus Internalization
9.
J Virol ; 93(17)2019 09 01.
Article in English | MEDLINE | ID: mdl-31217245

ABSTRACT

Despite the fact that the cell surface expression level of HLA-C on both uninfected and HIV-infected cells is lower than those of HLA-A and -B, increasing evidence suggests an important role for HLA-C and HLA-C-restricted CD8+ T cell responses in determining the efficiency of viral control in HIV-1-infected individuals. Nonetheless, HLA-C-restricted T cell responses are much less well studied than HLA-A/B-restricted ones, and relatively few optimal HIV-1 CD8+ T cell epitopes restricted by HLA-C alleles have been defined. Recent improvements in the sensitivity of mass spectrometry (MS)-based approaches for profiling the immunopeptidome present an opportunity for epitope discovery on a large scale. Here, we employed an MS-based immunopeptidomic strategy to characterize HIV-1 peptides presented by a protective allele, HLA-C*12:02. We identified a total of 10,799 unique 8- to 12-mer peptides, including 15 HIV-1 peptides. The latter included 2 previously reported immunodominant HIV-1 epitopes, and analysis of T cell responses to the other HIV-1 peptides detected revealed an additional immunodominant epitope. These findings illustrate the utility of MS-based approaches for epitope definition and emphasize the capacity of HLA-C to present immunodominant T cell epitopes in HIV-infected individuals, indicating the importance of further evaluation of HLA-C-restricted responses to identify novel targets for HIV-1 prophylactic and therapeutic strategies.IMPORTANCE Mass spectrometry (MS)-based approaches are increasingly being employed for large-scale identification of HLA-bound peptides derived from pathogens, but only very limited profiling of the HIV-1 immunopeptidome has been conducted to date. Notably, a growing body of evidence has recently begun to indicate a protective role for HLA-C in HIV-1 infection, which may suggest that despite the fact that levels of HLA-C expression on both uninfected and HIV-1-infected cells are lower than those of HLA-A/B, HLA-C still presents epitopes to CD8+ T cells effectively. To explore this, we analyzed HLA-C*12:02-restricted HIV-1 peptides presented on HIV-1-infected cells expressing only HLA-C*12:02 (a protective allele) using liquid chromatography-tandem MS (LC-MS/MS). We identified a number of novel HLA-C*12:02-bound HIV-1 peptides and showed that although the majority of them did not elicit T cell responses during natural infection in a Japanese cohort, they included three immunodominant epitopes, emphasizing the contribution of HLA-C to epitope presentation on HIV-infected cells.


Subject(s)
HIV Infections/immunology , HIV-1/immunology , HLA-C Antigens/metabolism , Immunodominant Epitopes/immunology , Proteomics/methods , Animals , Antigen Presentation , CD8-Positive T-Lymphocytes/immunology , Chromatography, Liquid , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/isolation & purification , HIV Infections/virology , HIV-1/chemistry , Humans , Immunodominant Epitopes/isolation & purification , Mice , Tandem Mass Spectrometry
10.
EBioMedicine ; 42: 109-119, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30956171

ABSTRACT

BACKGROUND: HIV-1-specific CD8+ T cells are required for immune suppression of HIV-1 replication and elimination of the associated viral reservoirs. However, effective induction of functional HIV-1-specific CD8+ T cells from naïve cells remains problematic in the setting of human vaccine trials. In this study, we investigated priming of functional HIV-1-specific CD8+ T cells from naïve cells. METHODS: HIV-1-specific CD8+ T cells were primed from naïve T cells of HIV-1-seronegative individuals using TLR4 ligand LPS or STING ligand 3'3'-cGAMP in vitro. We established HIV-1-specific CD8+ T cell lines from primed T cells and then investigated functional properties of these cells. FINDINGS: HIV-1-specific CD8+ T cells primed with LPS failed to suppress HIV-1. In contrast, 3'3'-cGAMP effectively primed HIV-1-specific CD8+ T cells with strong ability to suppress HIV-1. 3'3'-cGAMP-primed T cells had higher expression levels of perforin and granzyme B than LPS-primed ones. The expression levels of granzyme B and perforin and viral suppression ability of 3'3'-cGAMP-primed T cells were positively correlated with the production level of type I IFN from PBMCs stimulated with 3'3'-cGAMP. INTERPRETATION: The present study demonstrates the potential of 3'3'-cGAMP to induce HIV-1-specific CD8+ T cells with strong effector function from naïve cells via a strong type I IFN production and suggests that this STING ligand may be useful for AIDS vaccine and cure treatment.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , HIV Infections/immunology , HIV Infections/virology , HIV-1/immunology , T-Lymphocyte Subsets/immunology , Biomarkers , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , Cytokines/metabolism , Humans , Lymphocyte Activation/immunology , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/metabolism , Viral Load , Virus Replication
11.
J Virol ; 93(7)2019 04 01.
Article in English | MEDLINE | ID: mdl-30674626

ABSTRACT

Cytotoxic T lymphocytes (CTLs) with strong abilities to suppress HIV-1 replication and recognize circulating HIV-1 could be key for both HIV-1 cure and prophylaxis. We recently designed conserved mosaic T-cell vaccine immunogens (tHIVconsvX) composed of 6 Gag and Pol regions. Since the tHIVconsvX vaccine targets conserved regions common to most global HIV-1 variants and employs a bivalent mosaic design, it is expected that it could be universal if the vaccine works. Although we recently demonstrated that CTLs specific for 5 Gag epitopes in the vaccine immunogens had strong ability to suppress HIV-1 replication in vitro and in vivo, it remains unknown whether the Pol region-specific CTLs are equally efficient. In this study, we investigated CTLs specific for Pol epitopes in the immunogens in treatment-naive Japanese patients infected with HIV-1 clade B. Overall, we mapped 20 reported and 5 novel Pol conserved epitopes in tHIVconsvX. Responses to 6 Pol epitopes were significantly associated with good clinical outcome, suggesting that CTLs specific for these 6 Pol epitopes had a strong ability to suppress HIV-1 replication in HIV-1-infected individuals. In vitro T-cell analyses further confirmed that the Pol-specific CTLs could effectively suppress HIV-1 replication. The present study thus demonstrated that the Pol regions of the vaccine contained protective epitopes. T-cell responses to the previous 5 Gag and present 6 Pol protective epitopes together also showed a strong correlation with better clinical outcome. These findings support the testing of the conserved mosaic vaccine in HIV-1 cure and prevention in humans.IMPORTANCE It is likely necessary for an effective AIDS vaccine to elicit CD8+ T cells with the ability to recognize circulating HIV-1 and suppress its replication. We recently developed novel bivalent mosaic T-cell vaccine immunogens composed of conserved regions of the Gag and Pol proteins matched to at least 80% globally circulating HIV-1 isolates. Nevertheless, it remains to be proven if vaccination with these immunogens can elicit T cells with the ability to suppress HIV-1 replication. It is well known that Gag-specific T cells can suppress HIV-1 replication more effectively than T cells specific for epitopes in other proteins. We recently identified 5 protective Gag epitopes in the vaccine immunogens. In this study, we identified T cells specific for 6 Pol epitopes present in the immunogens with strong abilities to suppress HIV-1 in vivo and in vitro This study further encourages clinical testing of the conserved mosaic T-cell vaccine in HIV-1 prevention and cure.


Subject(s)
AIDS Vaccines/immunology , Conserved Sequence/immunology , Epitopes, T-Lymphocyte/immunology , Gene Products, pol/immunology , HIV-1/immunology , T-Lymphocytes, Cytotoxic/immunology , Virus Replication/immunology , Amino Acid Sequence , Cell Line , Cross Reactions/immunology , HIV Infections/immunology , HIV Infections/virology , HIV Seropositivity/immunology , HIV Seropositivity/virology , Humans , T-Lymphocytes, Cytotoxic/virology , gag Gene Products, Human Immunodeficiency Virus/immunology
12.
J Virol ; 93(1)2019 01 01.
Article in English | MEDLINE | ID: mdl-30333175

ABSTRACT

HIV-1-specific cytotoxic T-lymphocytes (CTLs) with strong abilities to suppress HIV-1 replication and recognize most circulating HIV-1 strains are candidates for effector T cells for cure treatment and prophylactic AIDS vaccine. Previous studies demonstrated that the existence of CTLs specific for 11 epitopes was significantly associated with good clinical outcomes in Japan, although CTLs specific for one of these epitopes select for escape mutations. However, it remains unknown whether the CTLs specific for the remaining 10 epitopes suppress HIV-1 replication in vitro and recognize circulating HIV-1. Here, we investigated the abilities of these CTLs to suppress HIV-1 replication and to recognize variants in circulating HIV-1. CTL clones specific for 10 epitopes had strong abilities to suppress HIV-1 replication in vitro The ex vivo and in vitro analyses of T-cell responses to variant epitope peptides showed that the T cells specific for 10 epitopes recognized mutant peptides which are detected in 84.1% to 98.8% of the circulating HIV-1 strains found in HIV-1-infected Japanese individuals. In addition, the T cells specific for 5 epitopes well recognized target cells infected with 7 mutant viruses that had been detected in >5% of tested individuals. Taken together, these results suggest that CTLs specific for the 10 epitopes effectively suppress HIV-1 replication and broadly recognize the circulating HIV-1 strains in the HIV-1-infected individuals. This study suggests the use of these T cells in clinical trials.IMPORTANCE In recent T-cell AIDS vaccine trials, the vaccines did not prevent HIV-1 infection, although HIV-1-specific T cells were induced in the vaccinated individuals, suggesting that the T cells have a weak ability to suppress HIV-1 replication and fail to recognize circulating HIV-1. We previously demonstrated that the T-cell responses to 10 epitopes were significantly associated with good clinical outcome. However, there is no direct evidence that these T cells have strong abilities to suppress HIV-1 replication and recognize circulating HIV-1. Here, we demonstrated that the T cells specific for the 10 epitopes had strong abilities to suppress HIV-1 replication in vitro Moreover, the T cells cross-recognized most of the circulating HIV-1 in HIV-1-infected individuals. This study suggests the use of T cells specific for these 10 epitopes in clinical trials of T-cell vaccines as a cure treatment.


Subject(s)
Epitopes, T-Lymphocyte/immunology , HIV Infections/virology , HIV-1/physiology , HLA-A Antigens/metabolism , T-Lymphocytes, Cytotoxic/metabolism , AIDS Vaccines , Cell Line , HIV Infections/immunology , HIV-1/immunology , Humans , Japan , Mutation , Virus Replication
13.
EBioMedicine ; 36: 103-112, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30249546

ABSTRACT

BACKGROUND: HLA-B*35 is an HLA allele associated with rapid progression to AIDS. However, a mechanism underlying the detrimental effect of HLA-B*35 on disease outcome remains unknown. Recent studies demonstrated that most prevalent subtype HLA-B*35:01 is a detrimental allele in HIV-1 clade B-infected individuals. We here investigated the effect of mutations within the epitopes on HLA-B*35:01-restricted CD8+ T cells having abilities to suppress HIV-1 replication. METHODS: We analyzed 16 HLA-B*35:01-restricted epitope-specific T cells in 63 HIV-1 clade B-infected Japanese B*35:01+ individuals and identified HLA-B*35:01-restricted CD8+ T cells having abilities to suppress HIV-1 replication. We further analyzed the effect of HLA-associated mutations on the ability of these T cells. FINDINGS: The breadth of T cell responses to 4 epitopes was inversely associated with plasma viral load (pVL). However, the accumulation of an Y135F mutation in NefYF9 out of the 4 epitopes, which is selected by HLA-A*24:02-restricted T cells, affected the ability of YF9-specific T cells to suppress HIV-1 replication. HLA-B*35:01+ individuals harboring this mutation had much higher pVL than those without it. YF9-specific T cells failed to suppress replication of the Y135F mutant in vitro. These results indicate that this mutation impairs suppression of HIV-1 replication by YF9-specific T cells. INTERPRETATION: These findings indicate that the Y135F mutation is a key factor underlying the detrimental effect of HLA-B*35:01 on disease outcomes in HIV-1 clade B-infected individuals. FUND: Grants-in-aid for AIDS Research from AMED and for scientific research from the Ministry of Education, Science, Sports, and Culture, Japan.


Subject(s)
HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , HIV-1/immunology , HLA-A24 Antigen/immunology , HLA-B35 Antigen/immunology , Host-Pathogen Interactions/immunology , Mutation , Cytokines/metabolism , Disease Progression , Epitopes, T-Lymphocyte/chemistry , HLA-A24 Antigen/chemistry , HLA-B35 Antigen/chemistry , Humans , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/virology , Viral Load , Virus Replication/immunology , nef Gene Products, Human Immunodeficiency Virus/genetics
14.
Immunol Lett ; 202: 65-72, 2018 10.
Article in English | MEDLINE | ID: mdl-30172717

ABSTRACT

Non-classical class Ib MHC-E molecule is becoming an increasingly interesting component of the immune response. It is involved in both the adaptive and innate immune responses to several chronic infections including HIV-1 and, under very specific circumstances, likely mediated a unique vaccine protection of rhesus macaques against pathogenic SIV challenge. Despite being recently in the spotlight for HIV-1 vaccine development, to date there is only one reported human leukocyte antigen (HLA)-E-binding peptide derived from HIV-1. In an effort to help start understanding the possible functions of HLA-E in HIV-1 infection, we determined novel HLA-E binding peptides derived from HIV-1 Gag, Pol and Vif proteins. These peptides were identified in three independent assays, all quantifying cell-surface stabilization of HLA-E*01:01 or HLA-E*01:03 molecules upon peptide binding, which was detected by HLA-E-specific monoclonal antibody and flow cytometry. Thus, following initial screen of over 400 HIV-1-derived 15-mer peptides, 4 novel 9-mer peptides PM9, RL9, RV9 and TP9 derived from 15-mer binders specifically stabilized surface expression of HLA-E*01:03 on the cell surface in two separate assays and 5 other binding candidates EI9, MD9, NR9, QF9 and YG9 gave a binding signal in only one of the two assays, but not both. Overall, we have expanded the current knowledge of HIV-1-derived target peptides stabilizing HLA-E cell-surface expression from 1 to 5, thus broadening inroads for future studies. This is a small, but significant contribution towards studying the fine mechanisms behind HLA-E actions and their possible use in development of a new kind of vaccines.


Subject(s)
HIV-1/immunology , Histocompatibility Antigens Class I/immunology , Peptides/immunology , AIDS Vaccines/immunology , Antibodies, Monoclonal/immunology , Cell Line , HEK293 Cells , HIV Infections/immunology , Humans , HLA-E Antigens
15.
Retrovirology ; 15(1): 46, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29970102

ABSTRACT

BACKGROUND: Development of AIDS vaccines for effective prevention of circulating HIV-1 is required, but no trial has demonstrated definitive effects on the prevention. Several recent T-cell vaccine trials showed no protection against HIV-1 acquisition although the vaccines induced HIV-1-specific T-cell responses, suggesting that the vaccine-induced T cells have insufficient capacities to suppress HIV-1 replication and/or cross-recognize circulating HIV-1. Therefore, it is necessary to develop T-cell vaccines that elicit T cells recognizing shared protective epitopes with strong ability to suppress HIV-1. We recently designed T-cell mosaic vaccine immunogens tHIVconsvX composed of 6 conserved Gag and Pol regions and demonstrated that the T-cell responses to peptides derived from the vaccine immunogens were significantly associated with lower plasma viral load (pVL) and higher CD4+ T-cell count (CD4 count) in HIV-1-infected, treatment-naive Japanese individuals. However, it remains unknown T cells of which specificities have the ability to suppress HIV-1 replication. In the present study, we sought to identify more T cells specific for protective Gag epitopes in the vaccine immunogens, and analyze their abilities to suppress HIV-1 replication and recognize epitope variants in circulating HIV-1. RESULTS: We determined 17 optimal Gag epitopes and their HLA restriction, and found that T-cell responses to 9 were associated significantly with lower pVL and/or higher CD4 count. T-cells recognizing 5 of these Gag peptides remained associated with good clinical outcome in 221 HIV-1-infected individuals even when comparing responders and non-responders with the same restricting HLA alleles. Although it was known previously that T cells specific for 3 of these protective epitopes had strong abilities to suppress HIV-1 replication in vivo, here we demonstrated equivalent abilities for the 2 novel epitopes. Furthermore, T cells against all 5 Gag epitopes cross-recognized variants in majority of circulating HIV-1. CONCLUSIONS: We demonstrated that T cells specific for 5 Gag conserved epitopes in the tHIVconsvX have ability to suppress replication of circulating HIV-1 in HIV-1-infected individuals. Therefore, the tHIVconsvX vaccines have the right specificity to contribute to prevention of HIV-1 infection and eradication of latently infected cells following HIV-1 reactivation.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , HIV Infections/immunology , HIV Infections/virology , HIV-1/physiology , Virus Replication/immunology , gag Gene Products, Human Immunodeficiency Virus/immunology , Alleles , Amino Acid Sequence , Cell Line , Conserved Sequence , Cross Reactions/immunology , Epitope Mapping , Epitopes, T-Lymphocyte/chemistry , HIV Infections/genetics , HLA Antigens/genetics , HLA Antigens/immunology , Host-Pathogen Interactions/immunology , Humans , Peptides/chemistry , Peptides/immunology , T-Cell Antigen Receptor Specificity , gag Gene Products, Human Immunodeficiency Virus/chemistry
16.
J Virol ; 92(5)2018 03 01.
Article in English | MEDLINE | ID: mdl-29237835

ABSTRACT

HIV-1-specific cytotoxic T cells (CTLs) play an important role in the control of HIV-1 subtype B or C infection. However, the role of CTLs in HIV-1 subtype A/E infection still remains unclear. Here we investigated the association of HLA class I alleles with clinical outcomes in treatment-naive Vietnamese infected with subtype A/E virus. We found that HLA-C*12:02 was significantly associated with lower plasma viral loads (pVL) and higher CD4 counts and that the HLA-A*29:01-B*07:05-C*15:05 haplotype was significantly associated with higher pVL and lower CD4 counts than those for individuals without these respective genotypes. Nine Pol and three Nef mutations were associated with at least one HLA allele in the HLA-A*29:01-B*07:05-C*15:05 haplotype, with a strong negative correlation between the number of HLA-associated Pol mutations and CD4 count as well as a positive correlation with pVL for individuals with these HLA alleles. The results suggest that the accumulation of mutations selected by CTLs restricted by these HLA alleles affects HIV control.IMPORTANCE Most previous studies on HLA association with disease progression after HIV-1 infection have been performed on cohorts infected with HIV-1 subtypes B and C, whereas few such population-based studies have been reported for cohorts infected with the Asian subtype A/E virus. In this study, we analyzed the association of HLA class I alleles with clinical outcomes for 536 HIV-1 subtype A/E-infected Vietnamese individuals. We found that HLA-C*12:02 is protective, while the HLA haplotype HLA-A*29:01-B*07:05-C*15:05 is deleterious. The individuals with HIV-1 mutations associated with at least one of the HLA alleles in the deleterious HLA haplotype had higher plasma viral loads and lower CD4 counts than those of individuals without the mutations, suggesting that viral adaptation and escape from HLA-mediated immune control occurred. The present study identifies a protective allele and a deleterious haplotype for HIV-1 subtype A/E infection which are different from those identified for cohorts infected with HIV-1 subtypes B and C.


Subject(s)
Genes, MHC Class I/genetics , Genes, MHC Class I/immunology , Genetic Fitness , HIV-1/genetics , HIV-1/immunology , pol Gene Products, Human Immunodeficiency Virus/genetics , pol Gene Products, Human Immunodeficiency Virus/immunology , Adult , Alleles , Asian People , CD4 Lymphocyte Count , Genotype , HIV Infections/immunology , HIV Infections/virology , HIV-1/pathogenicity , HLA-A Antigens/genetics , HLA-A Antigens/immunology , HLA-B7 Antigen/genetics , HLA-B7 Antigen/immunology , HLA-C Antigens/genetics , HLA-C Antigens/immunology , Haplotypes/genetics , Haplotypes/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Mutation , Vietnam , Viral Load , Virus Replication
17.
PLoS One ; 12(4): e0176418, 2017.
Article in English | MEDLINE | ID: mdl-28448594

ABSTRACT

BACKGROUND: Fine definition of targeted CD8+ T-cell epitopes and their human leucocyte antigen (HLA) class I restriction informs iterative improvements of HIV-1 T-cell vaccine designs and may predict early vaccine success or failure. Here, lymphocytes from volunteers, who had received candidate HIVconsv vaccines expressing conserved sub-protein regions of HIV-1, were used to define the optimum-length target epitopes and their HLA restriction. In HIV-1-positive patients, CD8+ T-cell responses predominantly recognize immunodominant, but hypervariable and therefore less protective epitopes. The less variable, more protective epitopes in conserved regions are typically subdominant. Therefore, induction of strong responses to conserved regions by vaccination provides an opportunity to discover novel important epitopes. METHODS: Cryopreserved lymphocytes from vaccine recipients were expanded by stimulation with 15-mer responder peptides for 10 days to establish short term-cell-line (STCL) effector cells. These were subjected to intracellular cytokine staining using serially truncated peptides and peptide-pulsed 721.221 cells expressing individual HLA class I alleles to define minimal epitope length and HLA restriction by stimulation of IFN-γ and TNF-α production and surface expression of CD107a. RESULTS: Using lymphocyte samples of 12 vaccine recipients, we defined 14 previously unreported optimal CD8+ T-cell HIV-1 epitopes and their four-digit HLA allele restriction (6 HLA-A, 7 HLA-B and 1 HLA-C alleles). Further 13 novel targets with incomplete information were revealed. CONCLUSIONS: The high rate of discovery of novel CD8+ T-cell effector epitopes warrants further epitope mining in recipients of the conserved-region vaccines in other populations and informs development of HIV-1/AIDS vaccines. TRIAL REGISTRATION: ClinicalTrials.gov NCT01151319.


Subject(s)
AIDS Vaccines/immunology , CD8-Positive T-Lymphocytes/immunology , Conserved Sequence , HIV Infections/prevention & control , HIV-1/immunology , HIV-1/physiology , AIDS Vaccines/chemistry , Alleles , Amino Acid Sequence , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , HIV Infections/genetics , HLA Antigens/genetics , Humans
18.
Cell Rep ; 17(9): 2210-2220, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27880898

ABSTRACT

Natural killer (NK) cells control viral infection in part through the interaction between killer cell immunoglobulin-like receptors (KIRs) and their human leukocyte antigen (HLA) ligands. We investigated 504 anti-retroviral (ART)-free Japanese patients chronically infected with HIV-1 and identified two KIR/HLA combinations, KIR2DL2/HLA-C∗12:02 and KIR2DL2/HLA-C∗14:03, that impact suppression of HIV-1 replication. KIR2DL2+ NK cells suppressed viral replication in HLA-C∗14:03+ or HLA-C∗12:02+ cells to a significantly greater extent than did KIR2DL2- NK cells in vitro. Functional analysis showed that the binding between HIV-1-derived peptide and HLA-C∗14:03 or HLA-C∗12:02 influenced KIR2DL2+ NK cell activity through reduced expression of the peptide-HLA (pHLA) complex on the cell surface (i.e., reduced KIR2DL2 ligand expression), rather than through reduced binding affinity of KIR2DL2 to the respective pHLA complexes. Thus, KIR2DL2/HLA-C∗12:02 and KIR2DL2/HLA-C∗14:03 compound genotypes have protective effects on control of HIV-1 through a mechanism involving KIR2DL2-mediated NK cell recognition of virus-infected cells, providing additional understanding of NK cells in HIV-1 infection.


Subject(s)
HIV Infections/immunology , HIV Infections/virology , HIV-1/physiology , HLA-C Antigens/metabolism , Killer Cells, Natural/immunology , Receptors, KIR2DL2/metabolism , Alleles , Asian People , Chronic Disease , HIV Infections/blood , HIV-1/immunology , Humans , Viral Load , Virus Replication
19.
Cell Rep ; 15(10): 2279-2291, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27239036

ABSTRACT

The mechanistic basis for the progressive accumulation of Y(135)F Nef mutant viruses in the HIV-1-infected population remains poorly understood. Y(135)F viruses carry the 2F mutation within RW8 and RF10, which are two HLA-A(∗)24:02-restricted superimposed Nef epitopes recognized by distinct and adaptable CD8(+) T cell responses. We combined comprehensive analysis of the T cell receptor repertoire and cross-reactive potential of wild-type or 2F RW8- and RF10-specific CD8(+) T cells with peptide-MHC complex stability and crystal structure studies. We find that, by affecting direct and water-mediated hydrogen bond networks within the peptide-MHC complex, the 2F mutation reduces both TCR and HLA binding. This suggests an advantage underlying the evolution of the 2F variant with decreased CD8(+) T cell efficacy. Our study provides a refined understanding of HIV-1 and CD8(+) T cell co-adaptation at the population level.


Subject(s)
HIV-1/genetics , HIV-1/physiology , Mutation/genetics , T-Lymphocytes/immunology , Adaptation, Physiological/genetics , Clone Cells , HLA-A Antigens/immunology , Humans , Models, Molecular , Peptides/chemistry , Protein Binding , Protein Conformation , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Cytotoxic/immunology , Water/chemistry
20.
AIDS ; 30(5): 681-9, 2016 Mar 13.
Article in English | MEDLINE | ID: mdl-26595539

ABSTRACT

OBJECTIVES: Identification of human leukocyte antigen-associated HIV-1 polymorphisms (HLA-APs) in different global populations furthers our understanding of HIV-1 pathogenesis and may help identify candidate immunogens for HIV vaccines targeted to these populations. Although numerous population-based studies identifying HLA-APs have been conducted in HIV-1 subtype B- and subtype C-infected cohorts, few have focused on subtype A/E. DESIGN: We investigated HLA-APs in a cohort of chronically HIV-1 subtype A/E-infected Vietnamese individuals. METHODS: HLA-APs in HIV-1 Gag, Pol, and Nef regions from 388 treatment-naive individuals chronically infected with HIV-1 subtype A/E were analyzed using phylogenetically informed approaches. RESULTS: A total of 303 HLA-APs were identified. HLA-APs occurring at six positions in Gag and six positions in Pol were significantly associated with higher plasma viral load (pVL), whereas HLA-APs occurring at two positions in Gag and 13 positions in Pol were significantly associated with lower CD4 T-cell counts. Furthermore, the proportion of Pol codons harboring an HLA-AP specific to the host's HLA correlated positively with HIV-1 pVL (R = 0.22; P < 0.0001) and inversely with CD4 T-cell counts (R = -0.32; P < 0.0001). Similarly, the proportion of HLA-associated Gag codons harboring host-specific HLA-AP correlated inversely with CD4 T-cell counts (R = -0.13; P = 0.01). CONCLUSION: These significant associations between HIV-1 amino acids adapted to Vietnamese HLA alleles and higher pVL and lower CD4 T-cell counts suggests that accumulation of cytotoxic T cells escape mutations may influence clinical outcomes in HIV-1 subtype A/E-infected Vietnamese individuals.


Subject(s)
HIV Infections/pathology , HIV Infections/virology , HIV-1/genetics , HLA Antigens/metabolism , Polymorphism, Genetic , gag Gene Products, Human Immunodeficiency Virus/genetics , pol Gene Products, Human Immunodeficiency Virus/genetics , Adult , Asian People , CD4 Lymphocyte Count , Cross-Sectional Studies , Female , HIV Infections/immunology , HIV-1/classification , HIV-1/isolation & purification , Humans , Male , Mutation , Plasma/virology , Viral Load , nef Gene Products, Human Immunodeficiency Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL