Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 71: 116949, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35926326

ABSTRACT

RAS protein plays a key role in cellular proliferation and differentiation. RAS gene mutation is a known driver of oncogenic alternation in human cancer. RAS inhibition is an effective therapeutic treatment for solid tumors, but RAS protein has been classified as an undruggable target. Recent reports have demonstrated that a covalent binder to KRAS protein at a mutated cysteine residue (G12C) is effective for the treatment of solid tumors. Here, we report a series of 1-{2,7-diazaspiro[3.5]nonan-2-yl}prop-2-en-1-one derivatives as potent covalent inhibitors against KRAS G12C identified throughout structural optimization of an acryloyl amine moiety to improve in vitro inhibitory activity. From an X-ray complex structural analysis, the 1-{2,7-diazaspiro[3.5]nonan-2-yl}prop-2-en-1-one moiety binds in the switch-II pocket of KRAS G12C. Further optimization of the lead compound (5c) led to the successful identification of 1-[7-[6-chloro-8-fluoro-7-(5-methyl-1H-indazol-4-yl)-2-[(1-methylpiperidin-4-yl)amino]quinazolin-4-yl]-2,7-diazaspiro[3.5]nonan-2-yl]prop-2-en-1-one (7b), a potent compound with high metabolic stabilities in human and mouse liver microsomes. Compound 7b showed a dose-dependent antitumor effect on subcutaneous administration in an NCI-H1373 xenograft mouse model.


Subject(s)
Alkanes/pharmacology , Neoplasms , Proto-Oncogene Proteins p21(ras) , Animals , Cell Proliferation , Humans , Mice , Mutation , Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/pharmacology , ras Proteins/genetics , ras Proteins/metabolism
2.
Chem Pharm Bull (Tokyo) ; 69(4): 360-373, 2021.
Article in English | MEDLINE | ID: mdl-33790081

ABSTRACT

The M3 muscarinic acetylcholine receptor (mAChR) plays an essential pharmacological role in mediating a broad range of actions of acetylcholine (ACh) released throughout the periphery and central nerve system (CNS). Nevertheless, its agonistic functions remain unclear due to the lack of available subtype-selective agonists or positive allosteric modulators (PAMs). In the course of our extended structure-activity relationships (SARs) study on 2-acylaminothiazole derivative 1, a previously reported PAM of the M3 mAChR, we successfully identified N-pyrimidyl/pyridyl-2-thiazolamine analogues as new scaffolds. The SARs study was rationalized using conformational analyses based on intramolecular interactions. A comprehensive study of a series of analogues described in this paper suggests that a unique sulfur-nitrogen nonbonding interaction in the N-pyrimidyl/pyridyl-2-thiazolamine moiety enable conformations that are essential for activity. Further, a SARs study around the N-pyrimidyl/pyridyl-2-thiazolamine core culminated in the discovery of compound 3g, which showed potent in vitro PAM activity for the M3 mAChR with excellent subtype selectivity. Compound 3g also showed a distinct pharmacological effect on isolated smooth muscle tissue from rat bladder and favorable pharmacokinetics profiles, suggesting its potential as a chemical tool for probing the M3 mAChR in further research.


Subject(s)
Allosteric Regulation/drug effects , Pyrimidines/chemistry , Pyrimidines/pharmacology , Receptor, Muscarinic M3/metabolism , Thiazoles/chemistry , Thiazoles/pharmacology , Amination , Animals , Drug Design , Female , Humans , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/pharmacokinetics
3.
Chem Pharm Bull (Tokyo) ; 68(3): 201-211, 2020.
Article in English | MEDLINE | ID: mdl-32115527

ABSTRACT

Auristatins are important payloads used in antibody drug conjugates (ADCs), and the most well-known compound family member, monomethyl auristatin (MMAE), is used in two Food and Drug Administration (FDA)-approved ADCs, Adcetris® and Polivy®. Multiple other auristatin-based ADCs are currently being evaluated in human clinical trials and further studies on this class of molecule are underway by several academic and industrial research groups. Our group's main focus is to investigate the structure-activity relationships (SAR) of novel auristatins with the goal of applying these to next generation ADCs. Modifications of the auristatin backbone scaffold have been widely reported in the chemical literature focusing on the terminal subunits: P1 (N-terminus) and P5 (C-terminus). Our approach was to modulate the activity and hydrophilic character through modifications of the central subunits P2-P3-P4 and thorough SAR study on the P5 subunit. Novel hydrophilic auristatins were observed to have greater potency in vitro and displayed enhanced in vivo antitumor activity when conjugated via protease-cleavable linkers and delivered intracellularly. Analysis of ADC aggregation also indicated that novel hydrophilic payloads enabled the synthesis of high-drug-to-antibody ratio (DAR) ADCs that were resistant to aggregation. Modification of the central peptide subunits also resulted in auristatins with potent cytotoxic activity in vitro and these azide-modified auristatins contain a handle for linker attachment from the central portion of the auristatin backbone.


Subject(s)
Aminobenzoates/chemistry , Antineoplastic Agents/chemistry , Oligopeptides/chemistry , Aminobenzoates/pharmacology , Animals , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Immunoconjugates , Molecular Structure , Oligopeptides/pharmacology
4.
ACS Omega ; 3(5): 5212-5221, 2018 May 31.
Article in English | MEDLINE | ID: mdl-30023909

ABSTRACT

Because of their potent cytotoxic activity, members of the auristatin family (synthetic analogues of the naturally occurring dolastatin 10) have remained a target of significant research, most notably in the context of antibody drug conjugate payloads. Typically, modifications of the backbone scaffold of dolastatin 10 have focused on variations of the N-terminal (P1) and C-terminal (P5) subunits. Scant attention has been paid thus far to the P4 subunit in the scientific literature. In this paper, we introduce an azide functional group at the P4 subunit, resulting in potent cytotoxic activity seen in vitro. Another highly active compound in this study contained azide functional groups in both the P2 and P4 subunits and required dolavaline as the P1 subunit and a phenylalanine as the P5 subunit. Furthermore, these two azide groups served not only as modifiers of cytotoxicity but also as handles for linker attachment or as a tether for use in the synthesis of a macrocyclic analogue.

SELECTION OF CITATIONS
SEARCH DETAIL
...