Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Genomic Med ; 4(6): 604-616, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27896283

ABSTRACT

BACKGROUND: Four patients from three Norwegian families presented with a common skin phenotype of warts, molluscum contagiosum, and dermatitis since early childhood, and various other immunological features. Warts are a common manifestation of human papilloma virus (HPV), but when they are overwhelming, disseminated and/or persistent, and presenting together with other immunological features, a primary immunodeficiency disease (PIDD) may be suspected. METHODS AND RESULTS: The four patients were exome sequenced as part of a larger study for detecting genetic causes of primary immunodeficiencies. No disease-causing variants were identified in known primary immunodeficiency genes or in other disease-related OMIM genes. However, the same homozygous missense variant in CARMIL2 (also known as RLTPR) was identified in all four patients. In each family, the variant was located within a narrow region of homozygosity, representing a potential region of autozygosity. CARMIL2 is a protein of undetermined function. A role in T-cell activation has been suggested and the mouse protein homolog (Rltpr) is essential for costimulation of T-cell activation via CD28, and for the development of regulatory T cells. Immunophenotyping demonstrated reduced regulatory, CD4+ memory, and CD4+ follicular T cells in all four patients. In addition, they all seem to have a deficiency in IFN γ -synthesis in CD4+ T cells and NK cells. CONCLUSIONS: We report a novel primary immunodeficiency, and a differential molecular diagnosis to CXCR4-,DOCK8-,GATA2-,MAGT1-,MCM4-,STK4-,RHOH-,TMC6-, and TMC8-related diseases. The specific variant may represent a Norwegian founder variant segregating on a population-specific haplotype.

2.
Genet Med ; 18(5): 443-51, 2016 05.
Article in English | MEDLINE | ID: mdl-26378787

ABSTRACT

PURPOSE: Charcot-Marie-Tooth (CMT) disease is a heterogeneous group of genetic disorders of the peripheral nervous system. Copy-number variants (CNVs) contribute significantly to CMT, as duplication of PMP22 underlies the majority of CMT1 cases. We hypothesized that CNVs and/or single-nucleotide variants (SNVs) might exist in patients with CMT with an unknown molecular genetic etiology. METHODS: Two hundred patients with CMT, negative for both SNV mutations in several CMT genes and for CNVs involving PMP22, were screened for CNVs by high-resolution oligonucleotide array comparative genomic hybridization. Whole-exome sequencing was conducted on individuals with rare, potentially pathogenic CNVs. RESULTS: Putatively causative CNVs were identified in five subjects (~2.5%); four of the five map to known neuropathy genes. Breakpoint sequencing revealed Alu-Alu-mediated junctions as a predominant contributor. Exome sequencing identified MFN2 SNVs in two of the individuals. CONCLUSION: Neuropathy-associated CNV outside of the PMP22 locus is rare in CMT. Nevertheless, there is potential clinical utility in testing for CNVs and exome sequencing in CMT cases negative for the CMT1A duplication. These findings suggest that complex phenotypes including neuropathy can potentially be caused by a combination of SNVs and CNVs affecting more than one disease-associated locus and contributing to a mutational burden.Genet Med 18 5, 443-451.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , GTP Phosphohydrolases/genetics , Mitochondrial Proteins/genetics , Myelin Proteins/genetics , Polyneuropathies/genetics , Adult , Age of Onset , Charcot-Marie-Tooth Disease/physiopathology , Child, Preschool , Comparative Genomic Hybridization , DNA Copy Number Variations/genetics , Exome/genetics , Female , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Motor Neurons/metabolism , Motor Neurons/pathology , Myelin P0 Protein/genetics , Neural Conduction/genetics , Polymorphism, Single Nucleotide/genetics , Polyneuropathies/physiopathology
3.
Genet Med ; 18(7): 678-85, 2016 07.
Article in English | MEDLINE | ID: mdl-26633545

ABSTRACT

PURPOSE: Whole-exome sequencing (WES) is increasingly used as a diagnostic tool in medicine, but prior reports focus on predominantly pediatric cohorts with neurologic or developmental disorders. We describe the diagnostic yield and characteristics of WES in adults. METHODS: We performed a retrospective analysis of consecutive WES reports for adults from a diagnostic laboratory. Phenotype composition was determined using Human Phenotype Ontology terms. RESULTS: Molecular diagnoses were reported for 17.5% (85/486) of adults, which is lower than that for a primarily pediatric population (25.2%; P = 0.0003); the diagnostic rate was higher (23.9%) for those 18-30 years of age compared to patients older than 30 years (10.4%; P = 0.0001). Dual Mendelian diagnoses contributed to 7% of diagnoses, revealing blended phenotypes. Diagnoses were more frequent among individuals with abnormalities of the nervous system, skeletal system, head/neck, and growth. Diagnostic rate was independent of family history information, and de novo mutations contributed to 61.4% of autosomal dominant diagnoses. CONCLUSION: Early WES experience in adults demonstrates molecular diagnoses in a substantial proportion of patients, informing clinical management, recurrence risk, and recommendations for relatives. A positive family history was not predictive, consistent with molecular diagnoses often revealed by de novo events, informing the Mendelian basis of genetic disease in adults.Genet Med 18 7, 678-685.


Subject(s)
Genetic Diseases, Inborn/diagnosis , Genetic Testing , Genome, Human , High-Throughput Nucleotide Sequencing/methods , Adult , Exome/genetics , Female , Genetic Diseases, Inborn/epidemiology , Genetic Predisposition to Disease , Humans , Male , Pathology, Molecular/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...