Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Neurosci ; 16: 838217, 2022.
Article in English | MEDLINE | ID: mdl-35308123

ABSTRACT

The demand for large cell numbers for cellular therapies and drug screening applications requires the development of scalable platforms capable of generating high-quality populations of tissue-specific cells derived from human pluripotent stem cells (hPSCs). Here, we studied the ability of Gibco StemScale PSC Suspension Medium to promote the efficient expansion of hPSC cultures as aggregates grown in suspension. We tested human induced pluripotent stem cell (hiPSC) growth in 6-well plates (on orbital shaker platforms) and single-use vertical-wheel bioreactors for a total of three consecutive passages. Up to a 9-fold increase in cell number was observed over 5 days per passage, with a cumulative fold change up to 600 in 15 days. Additionally, we compared neural induction of hiPSCs by using a dual SMAD inhibition protocol with a commercially available neural induction medium, which can potentially yield more than a 30-fold change, including neural progenitor induction and expansion. This system can also be adapted toward the generation of floor plate progenitors, which yields up to an 80-fold change in cell number and generates FOXA2-positive populations. In summary, we developed platforms for hiPSC expansion and neural induction into different brain regions that provide scalability toward producing clinically relevant cell numbers.

2.
J Leukoc Biol ; 102(1): 117-126, 2017 07.
Article in English | MEDLINE | ID: mdl-28389621

ABSTRACT

There is compelling evidence that circulatory hemodynamics prevent neutrophil activation, including adhesion to microvessels, in the microcirculation. However, the underlying mechanism or mechanisms by which that mechanoregulation occurs remain unresolved. Here, we report evidence that exposure to fluid shear stress (FSS) promotes neutrophils to release cathepsin B (ctsB) and that this autocrine regulatory event is antiadhesive for neutrophils on endothelial surfaces through Mac1-selective regulation. We used a combined cell-engineering and immunocytochemistry approach to find that ctsB was capable of cleaving Mac1 integrins on neutrophils and demonstrated that this proteolysis alters their adhesive functions. Under no-flow conditions, ctsB enhanced neutrophil migration though a putative effect on pseudopod retraction rates. We also established a flow-based cell detachment assay to verify the role of ctsB in the control of neutrophil adhesion by fluid flow stimulation. Fluid flow promoted neutrophil detachment from platelet and endothelial layers that required ctsB, consistent with its fluid shear stress-induced release. Notably, compared with leukocytes from wild-type mice, those from ctsB-deficient (ctsB -/- ) mice exhibited an impaired CD18 cleavage response to FSS, significantly elevated baseline levels of CD18 surface expression, and an enhanced adhesive capacity to mildly inflamed postcapillary venules. Taken together, the results of the present study support a role for ctsB in a hemodynamic control mechanism that is antiadhesive for leukocytes on endothelium. These results have implications in the pathogenesis of chronic inflammation, microvascular dysfunction, and cardiovascular diseases involving sustained neutrophil activation in the blood and microcirculation.


Subject(s)
Cathepsin B/immunology , Macrophage-1 Antigen/immunology , Neutrophil Activation , Neutrophils/immunology , Shear Strength , Animals , Cathepsin B/genetics , Cell Adhesion/genetics , Cell Adhesion/immunology , Cell Movement/genetics , Cell Movement/immunology , Female , HL-60 Cells , Human Umbilical Vein Endothelial Cells , Humans , Macrophage-1 Antigen/genetics , Male , Mice , Mice, Knockout
3.
J Biomech Eng ; 137(9)2015 Sep.
Article in English | MEDLINE | ID: mdl-26065495

ABSTRACT

Activated neutrophils have been reported to affect peripheral resistance, for example, by plugging capillaries or adhering to the microvasculature. In vivo and ex vivo data indicate that activated neutrophils circulating in the blood also influence peripheral resistance. We used viscometry and microvascular mimics for in vitro corroboration. The rheological impact of differentiated neutrophil-like HL-60 promyelocytes (dHL60s) or human neutrophil suspensions stimulated with 10 nM fMet-Leu-Phe (fMLP) was quantified using a cone-plate rheometer (450 s(-1) shear rate). To evaluate their impact on microscale flow resistance, we used 10-µm Isopore® membranes to model capillaries as well as single 200 × 50 µm microchannels and networks of twenty 20 × 50 µm microfluidic channels to mimic noncapillary microvasculature. Stimulation of dHL60 and neutrophil populations significantly altered their flow behavior as evidenced by their impact on suspension viscosity. Notably, hematocrit abrogated the impact of leukocyte activation on blood cell suspension viscosity. In micropore filters, activated cell suspensions enhanced flow resistance. This effect was further enhanced by the presence of erythrocytes. The resistance of our noncapillary microvascular mimics to flow of activated neutrophil suspensions was significantly increased only with hematocrit. Notably, it was elevated to a higher extent within the micronetwork chambers compared to the single-channel chambers. Collectively, our findings provide supportive evidence that activated neutrophils passing through the microcirculation may alter hemodynamic resistance due to their altered rheology in the noncapillary microvasculature. This effect is another way neutrophil activation due to chronic inflammation may, at least in part, contribute to the elevated hemodynamic resistance associated with cardiovascular diseases (e.g., hypertension and hypercholesterolemia).


Subject(s)
Hemodynamics , Neutrophils/cytology , Rheology , Biomimetics , Blood Viscosity , Erythrocytes/cytology , HL-60 Cells , Humans , Microvessels/physiology , Suspensions
SELECTION OF CITATIONS
SEARCH DETAIL
...