Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr D Struct Biol ; 74(Pt 4): 305-314, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29652257

ABSTRACT

Pullulan-hydrolysing enzymes, more commonly known as debranching enzymes for starch and other polysaccharides, are of great interest and have been widely used in the starch-saccharification industry. Type III pullulan hydrolase from Thermococcus kodakarensis (TK-PUL) possesses both pullulanase and α-amylase activities. Until now, only two enzymes in this class, which are capable of hydrolysing both α-1,4- and α-1,6-glycosidic bonds in pullulan to produce a mixture of maltose, panose and maltotriose, have been described. TK-PUL shows highest activity in the temperature range 95-100°C and has a pH optimum in the range 3.5-4.2. Its unique ability to hydrolyse maltotriose into maltose and glucose has not been reported for other homologous enzymes. The crystal structure of TK-PUL has been determined at a resolution of 2.8 Šand represents the first analysis of a type III pullulan hydrolyse. The structure reveals that the last part of the N-terminal domain and the C-terminal domain are significantly different from homologous structures. In addition, the loop regions at the active-site end of the central catalytic domain are quite different. The enzyme has a well defined calcium-binding site and possesses a rare vicinal disulfide bridge. The thermostability of TK-PUL and its homologues may be attributable to several factors, including the increased content of salt bridges, helical segments, Pro, Arg and Tyr residues and the decreased content of serine.


Subject(s)
Amylases/chemistry , Glycoside Hydrolases/chemistry , Thermococcus/enzymology , Catalytic Domain , Crystallography, X-Ray , Hydrolysis , Protein Conformation , Protein Domains , Protein Stability
2.
Acta Crystallogr D Struct Biol ; 73(Pt 11): 889-895, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29095161

ABSTRACT

L-Asparaginases catalyse the hydrolysis of asparagine to aspartic acid and ammonia. In addition, L-asparaginase is involved in the biosynthesis of amino acids such as lysine, methionine and threonine. These enzymes have been used as chemotherapeutic agents for the treatment of acute lymphoblastic leukaemia and other haematopoietic malignancies since the tumour cells cannot synthesize sufficient L-asparagine and are thus killed by deprivation of this amino acid. L-Asparaginases are also used in the food industry and have potential in the development of biosensors, for example for asparagine levels in leukaemia. The thermostable type I L-asparaginase from Thermococcus kodakarensis (TkA) is composed of 328 amino acids and forms homodimers in solution, with the highest catalytic activity being observed at pH 9.5 and 85°C. It has a Km value of 5.5 mM for L-asparagine, with no glutaminase activity being observed. The crystal structure of TkA has been determined at 2.18 Šresolution, confirming the presence of two α/ß domains connected by a short linker region. The N-terminal domain contains a highly flexible ß-hairpin which adopts `open' and `closed' conformations in different subunits of the solved TkA structure. In previously solved L-asparaginase structures this ß-hairpin was only visible when in the `closed' conformation, whilst it is characterized with good electron density in all of the subunits of the TkA structure. A phosphate anion resides at the active site, which is formed by residues from both of the neighbouring monomers in the dimer. The high thermostability of TkA is attributed to the high arginine and salt-bridge content when compared with related mesophilic enzymes.


Subject(s)
Asparaginase/chemistry , Asparaginase/metabolism , Asparagine/metabolism , Thermococcus/enzymology , Amino Acid Sequence , Catalytic Domain , Crystallization , Crystallography, X-Ray , Glutaminase/chemistry , Glutaminase/metabolism , Hydrolysis , Models, Molecular , Protein Conformation , Sequence Homology
3.
Acta Crystallogr D Struct Biol ; 73(Pt 5): 420-427, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28471366

ABSTRACT

The family B DNA polymerase from Pyrobaculum calidifontis (Pc-polymerase) consists of 783 amino acids and is magnesium-ion dependent. It has an optimal pH of 8.5, an optimal temperature of 75°C and a half-life of 4.5 h at 95°C, giving it greater thermostability than the widely used Taq DNA polymerase. The enzyme is also capable of PCR-amplifying larger DNA fragments of up to 7.5 kb in length. It was shown to have functional, error-correcting 3'-5' exonuclease activity, as do the related high-fidelity DNA polymerases from Pyrococcus furiosus, Thermococcus kodakarensis KOD1 and Thermococcus gorgonarius, which have extensive commercial applications. Pc-polymerase has a quite low sequence identity of approximately 37% to these enzymes, which, in contrast, have very high sequence identity to each other, suggesting that the P. calidifontis enzyme is distinct. Here, the structure determination of Pc-polymerase is reported, which has been refined to an R factor of 24.47% and an Rfree of 28.81% at 2.80 Šresolution. The domains of the enzyme are arranged in a circular fashion to form a disc with a narrow central channel. One face of the disc has a number of connected crevices in it, which allow the protein to bind duplex and single-stranded DNA. The central channel is thought to allow incoming nucleoside triphosphates to access the active site. The enzyme has a number of unique structural features which distinguish it from other archaeal DNA polymerases and may account for its high processivity. A model of the complex with the primer-template duplex of DNA indicates that the largest conformational change that occurs upon DNA binding is the movement of the thumb domain, which rotates by 7.6° and moves by 10.0 Å. The surface potential of the enzyme is dominated by acidic groups in the central region of the molecule, where catalytic magnesium ions bind at the polymerase and exonuclease active sites. The outer regions are richer in basic amino acids that presumably interact with the sugar-phosphate backbone of DNA. The large number of salt bridges may contribute to the high thermal stability of this enzyme.


Subject(s)
DNA-Directed DNA Polymerase/chemistry , Pyrobaculum/enzymology , Amino Acid Sequence , Crystallography, X-Ray , Enzyme Stability , Models, Molecular , Pyrobaculum/chemistry , Sequence Alignment , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...