Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Bioorg Chem ; 147: 107336, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38636431

ABSTRACT

In this series we report the structure-based design, synthesis and anticancer activity evaluation of a series of eighteen cyclopropylamine containing cyanopyrimidine derivatives. The computational predictions of ADMET properties revealed appropriate aqueous solubility, high GI absorption, no BBB permeability, no Lipinski rule violations, medium total clearance and no mutagenic, tumorigenic, irritant and reproductive toxic risks for most of the compounds. Compounds VIIb, VIIi and VIIm emerged as the most potent anticancer agents among all compounds evaluated against 60 cancer cell lines through the one-dose (10 µM) sulforhodamine B assay. Further, the multiple dose cell viability studies against cancer cell lines MOLT-4, A549 and HCT-116 revealed results consistent with the one-dose assay, besides sparing normal cell line HEK-293. The three potent compounds also displayed potent LSD1 inhibitory activity with IC50 values of 2.25, 1.80 and 6.08 µM. The n-propyl-thio/isopropyl-thio group bonded to the pyrimidine ring and unsubstituted/ electron donating group (at the para- position) attached to the phenyl ring resulted in enhanced anticancer activity. However, against leukemia cancer, the electron donating isopropyl group remarkably enhanced anti-cancer activity. Our findings provide important leads, which merit further optimization to result in better cancer therapeutics.

2.
J Biomol Struct Dyn ; 42(4): 1858-1874, 2024.
Article in English | MEDLINE | ID: mdl-37129196

ABSTRACT

Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus and dexamethasone is a glucocorticoid widely used for its treatment. Dexamethasone is not used in non-severe cases due to its immunosuppressant action. So, considering this, Estrogen and Estetrol were tested for the treatment of COVID-19 as they all possess a common steroid ring and dislike dexamethasone, they are immunoenhancer. Virtual screening of test ligands was performed through molecular docking, MM-GBSA, simulations, in silico ADMET and drug-likeness prediction to identify their potential to inhibit the effects of SARS-CoV-2. Results showed that test ligands possess drug-like properties and they are safe as drug candidates. The protein-ligand interaction study revealed that they bind with the amino acid residues at the active site of the target proteins and the test ligands possess better binding potential than Dexamethasone. With protein Mpro, Estetrol and Estrogen showed docking score of -7.240 and -5.491 kcal/mol, and with protein ACE2, Estetrol and Estrogen showed docking score of -5.269 and -4.732 kcal/mol, respectively. Further, MD Simulation was carried out and most of the interactions of molecular docking are preserved during simulation. The prominent interactions that our test ligands showed during MD Simulation are similar to drugs that possess in vitro anticovid activity as shown in recent studies. Hence, our test ligands possessed potential for anticovid activity and they should be further tested through in vitro and in vivo studies for their activity against COVID-19.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Estetrol , Humans , Molecular Docking Simulation , COVID-19 Drug Treatment , SARS-CoV-2 , Estrogens , Dexamethasone/pharmacology , Molecular Dynamics Simulation , Protease Inhibitors
3.
Future Med Chem ; 15(18): 1669-1685, 2023 09.
Article in English | MEDLINE | ID: mdl-37732405

ABSTRACT

Background: Histone deacetylases (HDACs) play a vital role in the epigenetic regulation of transcription and expression. HDAC1 overexpression is seen in many cancers. Methodology: The authors synthesized and evaluated 27 novel coumarin-based amide derivatives for HDAC1 inhibitory activity. The compounds were screened at the US National Cancer Institute, and 5k and 5u were selected for five-dose assays. Compound 5k showed GI50 values of 0.294 and 0.264 µM against MOLT-4 and LOX-IMVI, respectively; whereas 5u had GI50 values of 0.189 and 0.263 µM, respectively. Both derivatives showed better activity than entinostat and suberoylanilide hydroxamic acid. Compound 5k exhibited an IC50 value of 1.00 µM on ACHN cells. Conclusion: Coumarin derivatives exhibited promising HDAC1 inhibitory potential and warrant future development as anticancer agents.


Subject(s)
Antineoplastic Agents , Neoplasms , Amides/pharmacology , Coumarins/pharmacology , Epigenesis, Genetic , Cell Line, Tumor , Histone Deacetylase Inhibitors/pharmacology , Cell Proliferation , Hydroxamic Acids/pharmacology , Drug Design , Antineoplastic Agents/pharmacology , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Neoplasms/drug therapy
4.
Sci Rep ; 13(1): 13729, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37607964

ABSTRACT

Identification of key regulators is a critical step toward discovering biomarker that participate in BC. A gene expression dataset of breast cancer patients was used to construct a network identifying key regulators in breast cancer. Overexpressed genes were identified with BioXpress, and then curated genes were used to construct the BC interactome network. As a result of selecting the genes with the highest degree from the BC network and tracing them, three of them were identified as novel key regulators, since they were involved at all network levels, thus serving as the backbone. There is some evidence in the literature that these genes are associated with BC. In order to treat BC, drugs that can simultaneously interact with multiple targets are promising. When compared with single-target drugs, multi-target drugs have higher efficacy, improved safety profile, and are easier to administer. The haplotype and LD studies of the FN1 gene revealed that the identified variations rs6707530 and rs1250248 may both cause TB, and endometriosis respectively. Interethnic differences in SNP and haplotype frequencies might explain the unpredictability in association studies and may contribute to predicting the pharmacokinetics and pharmacodynamics of drugs using FN1.


Subject(s)
Breast Neoplasms , Disease Progression , Molecular Docking Simulation , Network Pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Humans , Biomarkers, Tumor , Haplotypes , Linkage Disequilibrium , Endometriosis/drug therapy , Polymorphism, Single Nucleotide , Reproducibility of Results , Drug Repositioning , United States Food and Drug Administration/legislation & jurisprudence , United States , Drug Approval
5.
J Glob Antimicrob Resist ; 35: 67-75, 2023 12.
Article in English | MEDLINE | ID: mdl-37633420

ABSTRACT

OBJECTIVES: Artemisinin (ART) resistance in Plasmodium is threatening the artemisinin combination therapies-the first line of defence against malaria. ART resistance has been established to be mediated by the Plasmodium Kelch13 (PfK13) protein. For the crucial role of PfK13 in multiple pathways of the Plasmodium life cycle and ART resistance, it is imperative that we investigate its interacting partners. METHODS: We recombinantly expressed PfK13-p (Bric a brac/Poxvirus and zinc finger and propeller domains), generating anti-PfK13-p antibodies to perform co-immunoprecipitation assays and probed PfK13 interacting partners. Surface plasmon resonance and pull-down assays were performed to establish physical interactions of representative proteins with PfK13-p. RESULTS: The co-immunoprecipitation assays identified 17 proteins with distinct functions in the parasite life cycle- protein folding, cellular metabolism, and protein binding and invasion. In addition to the overlap with previously identified proteins, our study identified 10 unique proteins. Fructose-biphosphate aldolase and heat shock protein 70 demonstrated strong biophysical interaction with PfK13-p, with KD values of 6.6 µM and 7.6 µM, respectively. Additionally, Plasmodium merozoite surface protein 1 formed a complex with PfK13-p, which is evident from the pull-down assay. CONCLUSION: This study adds to our knowledge of the PfK13 protein in mediating ART resistance by identifying new PfK13 interacting partners. Three representative proteins-fructose-biphosphate aldolase, heat shock protein 70, and merozoite surface protein 1-demonstrated clear evidence of biophysical interactions with PfK13-p. However, elucidation of the functional relevance of these physical interactions are crucial in context of PfK13 role in ART resistance.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Parasites , Animals , Plasmodium falciparum/genetics , Antimalarials/pharmacology , Merozoite Surface Protein 1/therapeutic use , Drug Resistance , Protozoan Proteins/genetics , Mutation , Malaria, Falciparum/drug therapy , Artemisinins/pharmacology , HSP70 Heat-Shock Proteins/therapeutic use , Aldehyde-Lyases/therapeutic use , Fructose/therapeutic use
6.
Bioorg Chem ; 134: 106449, 2023 05.
Article in English | MEDLINE | ID: mdl-36889200

ABSTRACT

Despite the advancements in the management of Diabetes mellitus, the design and synthesis of drug molecule which ameliorates the hyperglycemia and associated secondary complications in diabetic patients, still remains a challenge. Herein, we report the synthesis, characterization and anti-diabetic evaluation of pyrimidine-thiazolidinedione derivatives. The synthesized compounds were characterized by 1H NMR, 13C NMR, FTIR and Mass Spectroscopic analytical techniques. The in-silico ADME studies depicted that the compounds were within the permissible limits of the Lipinski's rule of five. The compounds 6e and 6m showing the best results in OGTT were evaluated for in-vivo anti-diabetic evaluation in STZ induced diabetic rats. Administration of 6e and 6m for four weeks decreased the blood glucose levels significantly. Compound 6e (4.5 mg/kg p.o.) was the most potent compound of the series. It reduced the level of blood glucose to 145.2 ± 1.35 compared to the standard Pioglitazone (150.2 ± 1.06). Moreover, the 6e and 6m treated group did not show increase in bodyweight. The biochemical estimations showed that the levels of ALT, ASP, ALP, urea, creatinine, blood urea nitrogen, total protein and LDH restored to normal in 6e and 6m treated groups as compared to STZ control group. The histopathological studies supported the results obtained in biochemical estimations. Both the compounds did not show any toxicity. Moreover, the histopathological studies of pancreas, liver, heart and kidney revealed that the structural integrity of these tissues restored to almost normal in 6e and 6m treated groups as compared to STZ control group. Based upon these findings it can be concluded that the pyrimidine-based thiazolidinedione derivatives represent novel anti-diabetic agents with least side effects.


Subject(s)
Diabetes Mellitus, Experimental , Thiazolidinediones , Rats , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Thiazolidinediones/pharmacology , Thiazolidinediones/therapeutic use , Thiazolidinediones/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/chemistry , Pyrimidines/pharmacology , Pyrimidines/therapeutic use
7.
Future Med Chem ; 15(1): 9-24, 2023 01.
Article in English | MEDLINE | ID: mdl-36655571

ABSTRACT

Background: Mining of novel scaffolds as potential DPP-IV inhibitors for future development of potential candidates as antidiabetic agents to address global issues. Methodology: The identified hit KB-10 from a previously reported study was taken as a lead for designing a library of analogues and screened initially based on in silico parameters and docking score. A series of selected (2[4-(1-acetyl-5-phenyl-4,5-dihydro-1H-pyrazol-3-yl)phenoxy]-1-phenylethanone derivatives were synthesized and evaluated through in vitro studies. Compounds KB-23, KB-22 and KB-06 were found to be as potent, with IC50 values of 0.10 µM, 0.12 µM and 0.35 µM, respectively. They also showed promising antihyperglycemic potential in in vivo studies (oral glucose tolerance tests) in Wistar rats. Conclusion: This work establishes pyrazoline analogues KB-23, KB-22 and KB-06 as promising starting points for the development of potential antidiabetic agents.


Subject(s)
Aminosalicylic Acids , Hypoglycemic Agents , Rats , Animals , Hypoglycemic Agents/pharmacology , Rats, Wistar , Glucose Tolerance Test , Molecular Docking Simulation , Structure-Activity Relationship
8.
Curr Top Med Chem ; 23(14): 1319-1339, 2023.
Article in English | MEDLINE | ID: mdl-36703601

ABSTRACT

Coronavirus disease (COVID-19) was reported to be transmitted from bats to humans and, became a pandemic in 2020. COVID-19 is responsible for millions of deaths worldwide and still, the numbers are increasing. Further, despite the availability of vaccines, mutation in the virus continuously poses a threat of re-emergence of the more lethal form of the virus. So far, the repurposing of drugs has been exercised heavily for the identification of therapeutic agents against COVID-19, which led FDA to approve many drugs for the same e.g., remdesivir, favipiravir, ribavirin, etc. The anti-COVID drugs explored via other approaches include nirmatrelvir (used in combination with ritonavir as Paxlovid), tixagevimab and cilgavimab (both used in combination with each other) and others. However, these approved drugs failed to achieve a significant clinical outcome. Globally, natural bioactive have also been explored for anti-COVID-19 effects, based on their traditional medicinal values. Although the clinical findings suggest that FDA-approved drugs and natural bioactives can help reducing the overall mortality rate but the significant clinical outcome was not achieved. Therefore, the focus has been shifted towards new drug development. In line with that, a lot of work has been done and still going on to explore heterocyclic compounds as potent anti- COVID-19 drugs. Several heterocyclic scaffolds have been previously reported with potent antiinflammatory, anticancer, anti-viral, antimicrobial and anti-tubercular effects. Few of them are under consideration for clinical trials whereas others are under preclinical investigation. Hence, this review discusses the evidence of rationally designed and tested heterocyclic compounds acting on different targets against COVID-19. The present article will help the researches and will serve as a pivotal resource in the design and development of novel anti-COVID-19 drugs.


Subject(s)
COVID-19 , Heterocyclic Compounds , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/therapeutic use
9.
Bioorg Chem ; 126: 105885, 2022 09.
Article in English | MEDLINE | ID: mdl-35636128

ABSTRACT

A series of novel cyanopyrimidine-hydrazone hybrids were synthesized and characterized with various spectroscopic techniques. The synthesized compounds were tested at NCI, USA, on a 60-cell line panel and most of the compounds showed remarkable cytotoxic activity against different cancer cell lines. Compound 5a was found to be the most potent compound of the series and it was further selected for five dose assays wherein it exhibited GI50 value of 0.414 µM and 0.417 µM against HOP-62 and OVCAR-4 cell lines respectively. The in-silico mechanistic studies indicated that these compounds are acting through inhibition of lysine specific demethylase 1 (LSD1) as evident from in to vitro LSD1 inhibition activity of compounds. Among various synthesized derivatives, compound 5a was found to have IC50-value of 0.956 µM. In addition, absorption, distribution, metabolism, excretion and toxicity profile (ADMET) was assessed for these novel derivatives to get an insight on their pharmacokinetic/dynamic attributes which revealed that synthesized compounds showed acceptable metabolic stability in human liver microsomes with minimal inhibition of cytochrome P450s (CYPs). The results indicated that compound 5a could be a promising lead compound for further development as a therapeutic agent for anticancer activity.


Subject(s)
Antineoplastic Agents , Hydrazones , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Histone Demethylases , Humans , Hydrazones/chemistry , Lysine/pharmacology , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship
10.
Sci Rep ; 12(1): 5474, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361806

ABSTRACT

Hereditary glutathione reductase deficiency, caused by mutations of the GSR gene, is an autosomal recessive disorder characterized by decreased glutathione disulfide (GSSG) reduction activity and increased thermal instability. This study implemented computational analysis to screen the most likely mutation that might be associated with hereditary glutathione reductase deficiency and other diseases. Using ten online computational tools, the study revealed four nsSNPs among the 17 nsSNPs identified as most deleterious and disease associated. Structural analyses and evolutionary confirmation study of native and mutant GSR proteins using the HOPE project and ConSruf. HOPE revealed more flexibility in the native GSR structure than in the mutant structure. The mutation in GSR might be responsible for changes in the structural conformation and function of the GSR protein and might also play a significant role in inducing hereditary glutathione reductase deficiency. LD and haplotype studies of the gene revealed that the identified variations rs2978663 and rs8190955 may be responsible for obstructive heart defects (OHDs) and hereditary anemia, respectively. These interethnic differences in the frequencies of SNPs and haplotypes might help explain the unpredictability that has been reported in association studies and can contribute to predicting the pharmacokinetics and pharmacodynamics of drugs that make use of GSR.


Subject(s)
Glutathione Reductase , Polymorphism, Single Nucleotide , Glutathione , Glutathione Disulfide , Glutathione Reductase/genetics , Humans , Mutation
11.
Mini Rev Med Chem ; 22(12): 1648-1706, 2022.
Article in English | MEDLINE | ID: mdl-34939540

ABSTRACT

'Epigenetic' regulation of genes via post-translational modulation of proteins is a wellexplored approach for disease therapies, particularly cancer chemotherapeutics. Histone deacetylases (HDACs) are one of the important epigenetic targets and are mainly responsible for balancing the acetylation/deacetylation of lysine amino acids on histone/nonhistone proteins along with histone acetyltransferase (HAT). HDAC inhibitors (HDACIs) have become important biologically active compounds for the treatment of cancers due to cell cycle arrest, differentiation, and apoptosis in tumor cells, thus leading to anticancer activity. Out of the four classes of HDAC, i.e., Class I, II, III, and IV, HDACIs act on Class IV (Zinc dependent HDAC), and various FDA-approved drugs belong to this category. The required canonical pharmacophore model (zinc-binding group, surface recognition cap, and appropriate linker) supported by HDACIs, various heterocyclic moieties containing compounds exhibiting HDAC inhibitory activity, and structure-activity relationship of different synthetic derivatives reported during the last twelve years have been summarized in this review.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/chemistry , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Zinc
12.
J Biomol Struct Dyn ; 39(6): 2118-2132, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32248758

ABSTRACT

Identification of new DPP-IV inhibitors by integrating validated in silico approach is being presented herein. Novel hits were identified by combining pharmacophore and structure based virtual screening of ZINC and Knowledge Base in house database followed by ADME profiling, consensus docking studies. Six potential hits were identified and analysed for their synthetic accessibility score, novelty analysis and pan assay interference compounds filtration. Out of six, three hits viz., ZINC25060187, ZINC53746227 and KB-10 were analysed for stability studies using Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Molecular Dynamics (MD) simulation. The simulation studies of the identified hits revealed that these hits have good selectivity and stability in DPP-IV binding pocket. Important interactions with amino acids viz., Tyr547, Glu205 and Glu206 similar to co-crystallized ligand were also observed. One of the hits viz., KB-10 was synthesized and evaluated for its biological potential. The compound KB-10 showed good DPP-IV inhibition in both in vitro and in vivo studies with IC50: 22.69 µM. This study supports the fact that these techniques hold potential for efficient screening of compounds with unknown affinity for DPP-IV that could serve as candidates for therapeutic development.Communicated by Ramaswamy H. Sarma.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation
13.
Bioorg Chem ; 104: 104282, 2020 11.
Article in English | MEDLINE | ID: mdl-33010624

ABSTRACT

Cancer remains considered as one of the leading global health problems either due to meagre and suboptimal therapeutic response of chemotherapeutic agents or due to the emergence of spontaneous complex multidrug resistance in cancer cells. This created a persistent need for the development of new anticancer agents. Enthralled by the high success rate for natural product-based drug discovery and current research scenario, we synthesized a new series of 3,4,5-trimethoxy phenyl ring pendant sulfur-containingcyanopyrimidine derivatives clubbed with different amines intending to search an anticancer lead compound. To probe the anti-proliferative spectrum of the synthesized derivatives, an in-vitro evaluation was piloted against a panel of 60 cancer cell lines at the National Cancer Institute (NCI) representing major types of cancer diseases. Most of the derivatives showed good to moderate anti-proliferative activity. The results revealed that compound 4e displayed the most promising broad-spectrum anticancer activity with high growth inhibition of various cell lines representing multiple cancers diseases. Mechanistic investigation of compound 4e in human breast cancer MDA-MB-231 cells showed that compound 4e triggers cell death through the induction of apoptosis. ADMET studies and reverse screening were also performed to identify the potential targets of designed molecules. It was concluded that 3,4,5-trimethoxy phenyl ring pendant sulfur-containingcyanopyrimidine derivative 4e could act as a promising hit molecule for further development of novel anticancer therapeutics.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Pyrimidines/pharmacology , Sulfur/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dogs , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Humans , Madin Darby Canine Kidney Cells/drug effects , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Sulfur/chemistry
14.
Eur J Pharmacol ; 889: 173522, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32866503

ABSTRACT

The complications of Alzheimer's disease (AD) have made the development of its treatment a challenging task. Several studies have indicated the disruption of insulin receptor substrate-1 (IRS-1) signaling during the development and progression of AD. The role of a dipeptidyl peptidase-4 (DPP-4) inhibitor on hippocampal IRS-1 signaling has not been investigated before. In this study, we evaluated the efficacy of alogliptin (DPP-4 inhibitor) on hippocampal insulin resistance and associated AD complications. In the present study, amyloid-ß (1-42) fibrils were produced and administered intrahippocampally for inducing AD in Wistar rats. After 7 days of surgery, rats were treated with 10 and 20 mg/kg of alogliptin for 28 days. Morris water maze (MWM) test was performed in the last week of our experimental study. Post 24 h of final treatment, rats were euthanized and hippocampi were separated for biochemical and histopathological investigations. In-silico analysis revealed that alogliptin has a good binding affinity with Aß and beta-secretase-1 (BACE-1). Alogliptin significantly restored cognitive functions in Aß (1-42) fibrils injected rats during the MWM test. Alogliptin also significantly attenuated insulin level, IRS-1pS307 expression, Aß (1-42) level, GSK-3ß activity, TNF-α level and oxidative stress in the hippocampus. The histopathological analysis supported alogliptin mediated neuroprotective and anti-amyloidogenic effect. Immunohistochemical analysis also revealed a reduction in IRS-1pS307 expression after alogliptin treatment. The in-silico, behavioral, biochemical and histopathological analysis supports the protective effect of alogliptin against hippocampal insulin resistance and AD.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/toxicity , Disease Models, Animal , Hippocampus/metabolism , Insulin Resistance/physiology , Peptide Fragments/toxicity , Piperidines/therapeutic use , Uracil/analogs & derivatives , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Amyloid/metabolism , Amyloid/toxicity , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Dose-Response Relationship, Drug , Female , Hippocampus/drug effects , Male , Maze Learning/drug effects , Maze Learning/physiology , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/metabolism , Piperidines/pharmacology , Random Allocation , Rats , Rats, Wistar , Uracil/pharmacology , Uracil/therapeutic use
15.
J Biomol Struct Dyn ; 38(5): 1292-1305, 2020 Mar.
Article in English | MEDLINE | ID: mdl-30929611

ABSTRACT

Prolyl oligopeptidase (POP) enzyme has been studied for various disorders, viz. Schizophrenia, Alzheimer's, Parkinson's, Depression, Inflammation, etc., for three decades, but no drug has passed through the clinical trials, possibly because of indigent pharmacokinetics. This might have been a result of similar structures of drug candidates. This study aimed at identifying novel small non-peptidomimetic inhibitors for POP enzyme that could serve as a lead for developing newer drugs. Structure-based virtual screening of molecules of MolMall database was conducted on the POP enzyme (PDB ID 3DDU) to identify potential hits. The hits identified were subjected to computational pharmacokinetic screening followed by molecular mechanics/generalized Born and surface area studies to estimate the binding free energy of the docked complexes. After that, nine hits were selected and tested for POP inhibitory activity, among which one compound MM 4 was found to be most potent with EC50 of 100 µM. Compound MM 4 was further subjected to molecular dynamics simulations to study the overall stability of the ligand-protein complex. The compound interacted strongly with catalytic amino acid Arg643 by forming salt and water bridges; it also interacted well with amino acids Phe173, Arg252 and Met235. This study provides a lead molecule for further development of POP inhibitors.Communicated by Ramaswamy H. Sarma.


Subject(s)
Molecular Dynamics Simulation , Prolyl Oligopeptidases , Enzyme Inhibitors , Ligands , Molecular Docking Simulation
16.
J Biomol Struct Dyn ; 38(10): 2976-2987, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31366304

ABSTRACT

This study identifies and validates hexokinase type 4 (HK4), an isozyme of hexokinase in the liver and pancreas, as an important target of C2-ß-D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone (ßdGT), a xanthone glucoside suggested to have antidiabetic property. In the study, we applied the computational pipeline of molecular docking followed by the molecular dynamics simulations to shortlist potential ßdGT protein targets. The analysis of protein dynamics and the binding free energy (ΔG) led us to the identification of HK4 as a key ßdGT target, whereby the binding mode and domain dynamics suggested the activator function of ßdGT. ßdGT bound to the allosteric site of the isozyme ∼13 Å away from the substrate (glucose)-binding site. The binding free energy of the ligand-protein complex was energetically feasible (ΔG, -41.61 kcal/mol) and the cleft angle deviation between the two (small and large) domains of HK4 revealed differential HK4 dynamics in response to ßdGT binding. 3D structure analysis of the isozyme-ligand complex highlighted the role of Arg63, Glu67 and Lys458 in ligand stabilization and hydrophobic interactions mediated by Tyr214 and Met235. Experimental validation of the results of computational analysis confirmed the activator function of ßdGT on HK4. The study has implication in diabetes as ßdGT may be used to lower the blood glucose level by activating hepatic and pancreatic hexokinase without the risk of hypoglycemia.Communicated by Ramaswamy H. Sarma.


Subject(s)
Hexokinase , Liver , Pancreas , Xanthones/chemistry , Hexokinase/chemistry , Liver/enzymology , Molecular Docking Simulation , Pancreas/enzymology , Protein Binding
17.
Arch Pharm (Weinheim) ; 353(2): e1900287, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31867798

ABSTRACT

Inhibition of dihydrofolate reductase from Mycobacterium tuberculosis-dihydrofolate reductase (Mtb-DHFR) has emerged as a promising approach for the treatment of tuberculosis. To identify novel Mtb-DHFR inhibitors, structure-based virtual screening (SBVS) of the Molecular Diversity Preservation International (MolMall) database was performed using Glide against the Mtb-DHFR and h-DHFR enzymes. On the basis of SBVS, receptor fit, drug-like filters, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis, 16 hits were selected and tested for their antitubercular activity against the H37 RV strain of M. tuberculosis. Five compounds showed promising activity with compounds 11436 and 15275 as the most potent hits with IC50 values of 0.65 and 12.51 µM, respectively, against the H37 RV strain of M. tuberculosis. The two compounds were further tested in the Mtb-DHFR and h-DHFR enzymatic assay for selectivity and were found to be three- to eight-fold selective towards Mtb-DHFR over h-DHFR with minimum inhibitory concentration values of 5.50, 73.89 µM and 42.00, 263.00 µM, respectively. In silico simulation studies also supported the stability of the protein-ligand complex formation. The present study demonstrates the successful utilization of in silico SBVS tools for the identification of novel and potential Mtb-DHFR inhibitors and compound 11436 ((2,4-dihydroxyphenyl)(3,4,5-trihydroxyphenyl)methanone) as a potential lead for the development of novel Mtb-DHFR inhibitors.


Subject(s)
Antitubercular Agents/pharmacology , Folic Acid Antagonists/pharmacology , Molecular Docking Simulation , Mycobacterium tuberculosis/drug effects , Tetrahydrofolate Dehydrogenase/metabolism , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Dose-Response Relationship, Drug , Folic Acid Antagonists/chemical synthesis , Folic Acid Antagonists/chemistry , Molecular Structure , Mycobacterium tuberculosis/enzymology , Structure-Activity Relationship
18.
J Biomol Struct Dyn ; 38(18): 5349-5361, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31813365

ABSTRACT

The dipeptidyl peptidase-IV (DPP-IV) family of receptors possesses a large binding cavity that imparts promiscuity for number of ligand binding which is not common to other receptors. This feature increases the challenge of using computational methods to identify DPP-IV inhibitors, therefore using both pharmacophore and structure-based screening seems to be a reliable approach. Mining of novel DPP-IV inhibitors by integrating both of these in silico techniques was reported. Pharmacophore model (Model_008) obtained from structurally diverse reported compounds was used as a template for screening of MolMall database followed by structure-based screening against PDB ID: 5T4E. After absorption, distribution, metabolism and excretion (ADME) analysis of shortlisted compounds, consensus docking and molecular mechanics/generalized born surface area studies were carried out. The results of the docking studies obtained were comparable to that of the reference ligand. Out of nine hits identified, only one hit (ID MolMall-20062) was available which was procured through exchange program. Molecular dynamic simulation studies of the procured hit revealed its good selectivity and stability in DPP-IV binding pocket and interactions observed with important amino acids viz., Trp629, Lys544 and Arg125. Biological testing of the compound MolMall-20062 showed promising DPP-IV inhibition activity with IC50: 6.2 µM. Compound MolMall-20062 could be taken as a good lead for the development of DPP-IV inhibitors.AbbreviationsADMEabsorption, distribution, metabolism and excretionChEBIchemical entities of biological interestDPP-IVdipeptidyl peptidase IVDISCOtechdistance comparisonsHTVShigh throughput virtual screeningMDmolecular dynamicsMM-GBSAmolecular mechanics-generalized born surface areaOGTToral glucose tolerance testPBVSpharmacophore-based virtual screeningPDBprotein data bankRMSDroot mean square deviationROCreceiver operating characteristicsSPstandard precisionSBVSstructure-based virtual screeningVSvirtual screeningXPextra precisionCommunicated by Ramaswamy H. Sarma.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Hypoglycemic Agents , Molecular Docking Simulation , Computer Simulation , Diabetes Mellitus/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Ligands , Molecular Dynamics Simulation , Molecular Structure
19.
Heliyon ; 5(6): e01955, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31294107

ABSTRACT

In recent years, polysaccharide-decorated superparamagnetic iron oxide nanoparticles (SPIONs) have gained attention in the field of "nanotheranostics" with integrated diagnostic and therapeutic functions. Carboxymethyl Assam bora rice starch-stabilized SPIONs (CM-ABRS SPIONs), synthesized by co-precipitation method, has already shown exciting potential towards magnetic drug targeting potential. After establishing it as a promisable targeting carrier, the present study is focused on the next step i.e. to evaluate its In vitro anti-tumor potential by loading anticancer drug "Doxorubicin hydrochloride (DOX)" onto CM-ABRS SPIONs. DOX-loaded CM-ABRS SPIONs were physico-chemically characterized by DLS, zeta-potential, TEM, FT-IR, XRD, and VSM analysis. Spectroflourimetric analysis confirmed the maximum loading of DOX up to 6% (w/w) onto CM-ABRS SPIONs via electrostatic interactions. Further, molecular level drug performance was investigated by docking study against receptors (HER-2 and Folate receptor-α) over expressed in cancer cells and MTT assay (in MCF-7 and HeLa cell line), which conferred promisable results of DOX-CM-ABRS SPIONs as compared to standard DOX solution.

20.
Comput Biol Med ; 110: 175-185, 2019 07.
Article in English | MEDLINE | ID: mdl-31173941

ABSTRACT

In the present study, a series of dibenzepinones, dibenzoxepines, and benzosuberones targeting p38α MAP kinase were subjected to pharmacophore modelling, 3D-QSAR and molecular docking studies. The IC50 values for these 67 compounds ranged between 0.003 and 6.80 µM. A five-point model (DDHHR.8) was generated using these compounds. This model was found to be statistically significant and was found to have high correlation (R2 = 0.98), cross-validation coefficient (Q2 = 0.95) and F (330) values at six component PLS factor. Tests were performed to ascertain the efficacy of the generated model. These tests included external validation, Tropsha's test for predictive ability, Y-randomisation test and domain of applicability (APD). In order to check the restrictivity of the model, enrichment studies were performed with inactive compounds by using decoy set molecules. To evaluate the effectiveness of the docking protocol, the co-crystallised ligand was extracted from the ligand-binding domain of the protein and was re-docked into the same position. Both the conformers were then superimposed, suggesting satisfactory docking parameters with an RMSD value of less than 1.0 Š(0.853 Å). A 10 ns molecular dynamics simulation confirmed the docking results of the 3UVP-ligand complex and the presumed active conformation. The outcome of the present study provides insight into the molecular features that promote bioactivity and can be exploited for the prediction of novel potent p38α MAP kinase inhibitors before carrying out their synthesis and anticancer evaluation.


Subject(s)
Mitogen-Activated Protein Kinase 14 , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Kinase Inhibitors/chemistry , Humans , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Mitogen-Activated Protein Kinase 14/chemistry , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...