Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Biol Pharm Bull ; 47(5): 1058-1065, 2024.
Article in English | MEDLINE | ID: mdl-38825533

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is characterized by hepatic inflammation and fibrosis due to excessive fat accumulation. Monocyte chemoattractant protein-1 (MCP-1) is a key chemokine that infiltrates inflammatory cells into the liver during the development of NASH. Our previous studies demonstrated that a systemic deficiency of group IVA phospholipase A2 (IVA-PLA2), an enzyme that contributes to the production of lipid inflammatory mediators, protects mice against high-fat diet-induced hepatic fibrosis and markedly suppresses the CCl4-induced expression of MCP-1 in the liver. However, it remains unclear which cell types harboring IVA-PLA2 are involved in the elevated production of MCP-1. Hence, the present study assessed the types of cells responsible for IVA-PLA2-mediated production of MCP-1 using cultured hepatic stellate cells, endothelial cells, macrophages, and hepatocytes, as well as cell-type specific IVA-PLA2 deficient mice fed a high-fat diet. A relatively specific inhibitor of IVA-PLA2 markedly suppressed the expression of MCP-1 mRNA in cultured hepatic stellate cells, but the suppression of MCP-1 expression was partial in endothelial cells and not observed in monocytes/macrophages or hepatocytes. In contrast, a deficiency of IVA-PLA2 in collagen-producing cells (hepatic stellate cells), but not in other types of cells, reduced the high-fat diet-induced expression of MCP-1 and inflammatory cell infiltration in the liver. Our results suggest that IVA-PLA2 in hepatic stellate cells is critical for hepatic inflammation in the high-fat diet-induced development of NASH. This supports a potential therapeutic approach for NASH using a IVA-PLA2 inhibitor targeting hepatic stellate cells.


Subject(s)
Chemokine CCL2 , Diet, High-Fat , Group IV Phospholipases A2 , Hepatic Stellate Cells , Liver , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Up-Regulation , Animals , Diet, High-Fat/adverse effects , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Liver/pathology , Up-Regulation/drug effects , Male , Mice , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Group IV Phospholipases A2/genetics , Group IV Phospholipases A2/metabolism , Group IV Phospholipases A2/antagonists & inhibitors , Hepatocytes/metabolism , Hepatocytes/drug effects , Humans , Mice, Knockout , Collagen/metabolism , Collagen/biosynthesis , Macrophages/metabolism , Macrophages/drug effects , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Cells, Cultured
2.
Anticancer Res ; 44(2): 489-495, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38307564

ABSTRACT

BACKGROUND/AIM: Individuals with Down syndrome (DS), attributed to triplication of human chromosome 21 (Hsa21), exhibit a reduced incidence of solid tumors. However, the prevalence of glioblastoma among individuals with DS remains a contentious issue in epidemiological studies. Therefore, this study examined the gliomagenicity in Ts1Cje mice, a murine model of DS. MATERIALS AND METHODS: We employed the Sleeping Beauty transposon system for the integration of human oncogenes into cells of the subventricular zone of neonatal mice. RESULTS: Notably, Sleeping Beauty-mediated de novo murine gliomagenesis was significantly suppressed in Ts1Cje mice compared to wild-type mice. In glioblastomas of Ts1je mice, we observed an augmented presence of M1-polarized tumor-associated macrophages and microglia, known for their anti-tumor efficacy in the early stage of tumor development. CONCLUSION: Our findings in a mouse model of DS offer novel perspectives on the diminished gliomagenicity observed in individuals with DS.


Subject(s)
Down Syndrome , Mice , Animals , Humans , Down Syndrome/genetics , Down Syndrome/pathology , Disease Models, Animal
3.
Biol Pharm Bull ; 46(9): 1169-1175, 2023.
Article in English | MEDLINE | ID: mdl-37661395

ABSTRACT

Down syndrome (DS), which is caused by triplication of human chromosome 21 (Hsa21), exhibits some physical signs of accelerated aging, such as graying hair, wrinkles and menopause at an unusually young age. Development of early-onset Alzheimer's disease, which is frequently observed in adults with DS, is also suggested to occur due to accelerated aging of the brain. Several Hsa21 genes are suggested to be responsible for the accelerated aging in DS. In this review, we summarize these candidate genes and possible molecular mechanisms, and discuss the related key factors. In particular, we focus on copper, an essential trace element, as a key factor in the accelerated aging in DS. In addition, the physiological significance of brain copper accumulation in cognitive impairment is discussed. We herein provide our hypothesis on the copper dyshomeostasis-based pathophysiology of DS.


Subject(s)
Cognitive Dysfunction , Down Syndrome , Adult , Humans , Female , Down Syndrome/genetics , Copper , Aging , Cognitive Dysfunction/genetics , Acceleration
4.
Biol Pharm Bull ; 46(3): 488-493, 2023.
Article in English | MEDLINE | ID: mdl-36858578

ABSTRACT

Hepatic fibrosis, a primary feature of non-alcoholic steatohepatitis (NASH), develops with inflammation and subsequent activation of hepatic stellate cells (HSCs), the main extracellular matrix-producing cells. Currently, no approved pharmacotherapy is available to treat hepatic fibrosis, even under dietary intervention. The activation of cultured HSCs has been shown to be attenuated by pharmacological inhibition of group IVA phospholipase A2 (IVA-PLA2), an enzyme initiating the generation of lipid proinflammatory mediators. We examined the potential utility of IVA-PLA2 of HSCs as a therapeutic target for hepatic fibrosis in NASH under dietary modification using collagen-producing cell-specific IVA-PLA2-conditional knockout mice fed a high-fat diet and then returned to a normal one. Apparent hepatic fibrosis and the accumulation of hepatic lipid droplets developed in the IVA-PLA2-conditional knockout mice on a high-fat diet for nine weeks to a similar degree as in control mice. Most of the lipid droplets disappeared five weeks after switching the diet back to a normal one in both genetic mice. In contrast, the hepatic fibrosis in control mice still progressed even after changing back to a normal diet. However, deficiency of IVA-PLA2 in collagen-producing cells alleviated the aggravated hepatic fibrosis under dietary modification. Our results revealed that the protective effects of an HSC-specific IVA-PLA2 deficiency on fibrogenesis appear after switching the diet from a high-fat one back to a normal one, supporting the promising beneficial effects of the inhibition of IVA-PLA2 on progressive hepatic fibrosis under dietary intervention in NASH treatment.


Subject(s)
Diet, High-Fat , Non-alcoholic Fatty Liver Disease , Animals , Mice , Liver Cirrhosis , Collagen , Mice, Knockout , Phospholipases A2
5.
Biol Pharm Bull ; 46(2): 320-333, 2023.
Article in English | MEDLINE | ID: mdl-36724960

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by dementia. The most characteristic pathological changes in AD brain include extracellular amyloid-ß (Aß) accumulation and neuronal loss. Particularly, cholinergic neurons in the nucleus basalis of Meynert are some of the first neuronal groups to degenerate; accumulating evidence suggests that Aß oligomers are the primary form of neurotoxicity. Bacopa monniera is a traditional Indian memory enhancer whose extract has shown neuroprotective and Aß-reducing effects. In this study, we explored the low molecular weight compounds from B. monniera extracts with an affinity to Aß aggregates, including its oligomers, using Aß oligomer-conjugated beads and identified plantainoside B. Plantainoside B exhibited evident neuroprotective effects by preventing Aß attachment on the cell surface of human induced pluripotent stem cell (hiPSC)-derived cholinergic neurons. Moreover, it attenuated memory impairment in mice that received intrahippocampal Aß injections. Furthermore, radioisotope experiments revealed that plantainoside B has affinity to Aß aggregates including its oligomers and brain tissue from a mouse model of Aß pathology. In addition, plantainoside B could delay the Aß aggregation rate. Accordingly, plantainoside B may exert neuroprotective effects by binding to Aß oligomers, thus interrupting the binding of Aß oligomers to the cell surface. This suggests its potential application as a theranostics in AD, simultaneously diagnostic and therapeutic drugs.


Subject(s)
Alzheimer Disease , Bacopa , Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Neuroprotective Agents , Mice , Humans , Animals , Bacopa/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Induced Pluripotent Stem Cells/metabolism , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Alzheimer Disease/drug therapy , Memory Disorders/chemically induced , Memory Disorders/drug therapy
6.
Life Sci ; 294: 120355, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35093339

ABSTRACT

AIM: Non-alcoholic steatohepatitis (NASH) is characterized by steatosis, inflammatory responses and fibrosis. Our previous studies provided evidence that group IVA phospholipase A2 (IVA-PLA2), a key PLA2 isozyme in the arachidonic acid cascade, is involved in the development of NASH. However, which types of cells are critical for the IVA-PLA2-dependent onset and progression of NASH is unclear. We elucidated the effects of the cell-type-specific deficiency of IVA-PLA2 in mice on the development of NASH. MAIN METHODS: Cell-type-specific IVA-PLA2-conditional knockout (cKO) mice and littermate controls were fed a choline-deficient, L-amino-acid-defined, high-fat diet with 0.1% methionine as a NASH model. The degree of hepatic fibrosis was evaluated by staining with picric acid-Sirius red, and the number of activated hepatic stellate cells was determined by immunoblotting and immunostaining for α-smooth muscle actin. Sinusoidal capillarization was analyzed by scanning electron microscopy. KEY FINDINGS: The deposition of collagen and number of activated hepatic stellate cells were markedly reduced in endothelial cell/liver sinusoidal endothelial cell (EC/LSEC)-specific IVA-PLA2 cKO mice but not in hepatocyte-, monocyte/macrophage-, or hepatic stellate cell-specific IVA-PLA2 cKO mice. In addition, EC/LSEC-specific IVA-PLA2-deficient mice showed more fenestrae than control mice fed a CDAHFD, indicating suppression of sinusoidal capillarization. SIGNIFICANCE: These results suggest that ECs/LSECs contribute to the IVA-PLA2-dependent onset and/or progression of NASH. Endothelial IVA-PLA2 is a promising factor for promoting sinusoidal capillarization and the ensuing HSC activation and fibrosis; thus IVA-PLA2 in ECs/LSECs is a potential therapeutic target for NASH.


Subject(s)
Capillaries/pathology , Endothelial Cells/pathology , Group IV Phospholipases A2/physiology , Liver Cirrhosis/pathology , Neovascularization, Pathologic/pathology , Non-alcoholic Fatty Liver Disease/complications , Animals , Capillaries/enzymology , Endothelial Cells/enzymology , Liver Cirrhosis/enzymology , Liver Cirrhosis/etiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Pathologic/enzymology
7.
Biochem Biophys Res Commun ; 535: 87-92, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33348080

ABSTRACT

Down syndrome (DS, Trisomy 21) is the most common genetic cause of delayed fetal brain development and postnatal intellectual disability. Although delayed fetal brain development might be involved in intellectual disability, no evidence of an association between these abnormal phenotypes has been shown. To identify molecules differentially expressed in both the prenatal forebrain and adult hippocampus of Ts1Cje mice, a mouse model of DS, we employed a transcriptomic analysis. In the present study, we conducted transcriptomic profiling of the hippocampus of adult Ts1Cje mice and compared the results with the previously obtained transcriptomic profile of the prenatal forebrain at embryonic day 14.5. Results showed that the Tbx1 mRNA expression was decreased at both life stages. In addition, the decreased expression of Tbx1 mRNA was confirmed in other DS mouse models, Dp(16)1Yey/+ and Ts1Rhr mice, which carry longer and shorter trisomic regions, respectively. Taken together, these findings suggest that Tbx1 may link the delayed fetal brain development and intellectual disability in DS.


Subject(s)
Brain/embryology , Down Syndrome/genetics , Embryo, Mammalian/metabolism , Gene Expression Regulation, Developmental , T-Box Domain Proteins/genetics , Animals , Disease Models, Animal , Down-Regulation/genetics , Hippocampus/metabolism , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome
8.
Mol Brain ; 13(1): 140, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33059734

ABSTRACT

α2-Antiplasmin (α2AP), a principal physiological plasmin inhibitor, is mainly produced by the liver and kidneys, but it is also expressed in several parts of the brain, including the hippocampus and cerebral cortex. Our previous study demonstrated that α2AP knockout mice exhibit spatial memory impairment in comparison to wild-type mice, suggesting that α2AP is necessary for the fetal and/or neonatal development of the neural network for spatial memory. However, it is still unclear whether α2AP plays a role in the memory process. The present study demonstrated that adult hippocampal neurogenesis and remote spatial memory were enhanced by the injection of an anti-α2AP neutralizing antibody in WT mice, while the injection of α2AP reduced hippocampal neurogenesis and impaired remote spatial memory, suggesting that α2AP is a negative regulator in memory processing. The present study also found that the levels of α2AP in the brains of old mice were higher than those in young mice, and a negative correlation between the α2AP level and spatial working memory. In addition, aging-dependent brain oxidative stress and hippocampal inflammation were attenuated by α2AP deficiency. Thus, an age-related increase in α2AP might cause cognitive decline accompanied by brain oxidative stress and neuroinflammation. Taken together, our findings suggest that α2AP is a key regulator of the spatial memory process, and that it may represent a promising target to effectively regulate healthy brain aging.


Subject(s)
Aging/pathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Spatial Memory/physiology , alpha-2-Antiplasmin/metabolism , Animals , Antibodies, Neutralizing/metabolism , Hippocampus/physiopathology , Inflammation/pathology , Male , Mice, Inbred C57BL , Neurogenesis , Oxidative Stress , alpha-2-Antiplasmin/deficiency
9.
Brain Pathol ; 30(1): 75-91, 2020 01.
Article in English | MEDLINE | ID: mdl-31206867

ABSTRACT

Some mouse models of Down syndrome (DS), including Ts1Cje mice, exhibit impaired prenatal neurogenesis with yet unknown molecular mechanism. To gain insights into the impaired neurogenesis, a transcriptomic and flow cytometry analysis of E14.5 Ts1Cje embryo brain was performed. Our analysis revealed that the neutrophil and monocyte ratios in the CD45-positive hematopoietic cells were relatively increased, in agreement with the altered expression of inflammation/immune-related genes, in Ts1Cje embryonic brain, whereas the relative number of brain macrophages was decreased in comparison to wild-type mice. Similar upregulation of inflammation-associated mRNAs was observed in other DS mouse models, with variable trisomic region lengths. We used genetic manipulation to assess the contribution of Erg, a trisomic gene in these DS models, known to regulation hemato-immune cells. The perturbed proportions of immune cells in Ts1Cje mouse brain were restored in Ts1Cje-Erg+/+/Mld2 mice, which are disomic for functional Erg but otherwise trisomic on a Ts1Cje background. Moreover, the embryonic neurogenesis defects observed in Ts1Cje cortex were reduced in Ts1Cje-Erg+/+/Mld2 embryos. Our findings suggest that Erg gene triplication contributes to the dysregulation of the homeostatic proportion of the populations of immune cells in the embryonic brain and decreased prenatal cortical neurogenesis in the prenatal brain with DS.


Subject(s)
Down Syndrome/genetics , Neurogenesis/genetics , Transcriptional Regulator ERG/genetics , Animals , Brain/metabolism , Disease Models, Animal , Down Syndrome/immunology , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurogenesis/immunology , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Pregnancy , Transcriptional Regulator ERG/metabolism , Transcriptome
10.
Nihon Yakurigaku Zasshi ; 154(6): 335-339, 2019.
Article in Japanese | MEDLINE | ID: mdl-31787686

ABSTRACT

Down syndrome caused by triplication of human chromosome 21 (HSA21) is the most frequent aneuploidy, resulting in mental retardation, intellectual disability and accelerated aging. Individuals with DS are at an increased risk of developing Alzheimer's disease (AD)-like dementia, with up to 75% of DS people in their 60s developing dementia. Oxidative stress is widely accepted as a mechanism underlying a number of DS symptoms, such as accelerated aging and cognitive decline. Superoxide disumutase 1 (Sod1) and amiloyd precursor protein (App) genes are suggested as the candidate genes in HSA21 underlying the enhanced oxidative stress in individuals with DS. However, we previously demonstrated that the Ts1Cje mouse model, which has a normal copy number of both candidate genes, also shows enhanced oxidative stress, suggesting that triplicated genes other than Sod1 and App likely enhance oxidative stress in the brain of DS people. To identify the molecules with enhanced oxidative stress in Ts1Cje mice, we performed several -omics analyses. Recently, we showed that copper was accumulated in the brain of adult Ts1Cje mice in an analysis using inductively coupled plasma mass spectrometry (ICP-MS), and a low-copper diet was able to improve the elevated levels of copper. The low-copper diet also resolved some anomalies, such as the enhanced oxidative stress, accumulation of phosphorylated tau and low anxiety. These findings suggest that the accumulation of copper in the DS brain may be a therapeutic target for ameliorating a number of abnormal phenotypes in individuals with DS.


Subject(s)
Brain/physiopathology , Copper/metabolism , Down Syndrome/physiopathology , Adult , Alzheimer Disease , Animals , Disease Models, Animal , Humans , Mice
11.
Yakugaku Zasshi ; 139(9): 1155-1162, 2019.
Article in Japanese | MEDLINE | ID: mdl-31474631

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a lifestyle-related disease characterized by hepatic fibrosis with the accumulation of fat and inflammation and can progress to cirrhosis or hepatocellular carcinoma. However, effective pharmacotherapeutic strategies for hepatic fibrosis in NASH remain to be established. Among the initiators of inflammation, we have been investigating the possible involvement of group IVA phospholipase A2 (IVA-PLA2), which catalyzes the initial step in the generation of lipid mediators, including eicosanoids and lysophospholipids, in the progression of hepatic fibrosis. We have recently demonstrated that a lack of IVA-PLA2 alleviates hepatic fibrosis in NASH model mice fed a high-fat and high-cholesterol diet and in CCl4-treated mice. CCl4-induced hepatic fibrosis was also prevented by the administration of an orally active, specific IVA-PLA2 inhibitor even after hepatic fibrosis had developed. Based on these findings suggesting that IVA-PLA2 mediates the cellular responses contributing to the progression of hepatic fibrosis, we have been exploring which types of cells in the liver are involved in IVA-PLA2-mediated hepatic fibrosis using cell-specific IVA-PLA2 knockout mice. The preliminary experimental results suggest that IVA-PLA2 in endothelial cells, but not monocyte-derived cells, plays a role, in part, in the hepatic stellate cell-mediated progression of hepatic fibrosis. In this paper, we discuss the possibility that IVA-PLA2 and/or its related molecules are candidate pharmacotherapeutic targets for NASH treatment.


Subject(s)
Group IV Phospholipases A2/antagonists & inhibitors , Indoles/therapeutic use , Molecular Targeted Therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Propionates/therapeutic use , Animals , Disease Models, Animal , Group IV Phospholipases A2/physiology , Humans , Indoles/administration & dosage , Indoles/pharmacology , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/enzymology , Propionates/administration & dosage , Propionates/pharmacology
12.
Sci Rep ; 9(1): 204, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30659241

ABSTRACT

C57BL/6J (BL6J) and C57BL/6N (BL6N) inbred substrains are most widely used to understand the pathological roles of target molecules in a variety of diseases, including non-alcoholic steatohepatitis (NASH), based on transgenic mouse technologies. There are notable differences in the metabolic phenotypes, including glucose tolerance, between the BL6J and BL6N substrains, but the phenotypic differences in NASH are still unknown. We performed a comparative analysis of the two mouse substrains to identify the pathological phenotypic differences in NASH models. In the CCl4-induced NASH model, the BL6J mice exhibited a more severe degree of oxidative stress and fibrosis in the liver than the BL6N mice. In contrast, in the high-fat diet-induced NASH model, more accumulation of hepatic triglycerides but less weight gain and liver injury were noted in the BL6J mice than in the BL6N mice. Our findings strongly suggest caution be exercised with the use of unmatched mixed genetic background C57BL6 mice for studies related to NASH, especially when generating conditional knockout C57BL6 mice.


Subject(s)
Liver/metabolism , Liver/pathology , Non-alcoholic Fatty Liver Disease/pathology , Animals , Diet, High-Fat , Disease Models, Animal , Female , Fibrosis , Male , Mice , Mice, Inbred C57BL/genetics , Mice, Inbred Strains , Mice, Knockout , Mice, Transgenic , Non-alcoholic Fatty Liver Disease/genetics , Oxidative Stress/physiology , Phenotype , Weight Gain
13.
Free Radic Biol Med ; 134: 248-259, 2019 04.
Article in English | MEDLINE | ID: mdl-30660502

ABSTRACT

Elevated oxidative stress (OS) is widely accepted to be involved in the pathogenesis of Down syndrome (DS). However, the mechanisms underlying the elevation of OS in DS are poorly understood. Biometals, in particular copper and iron, play roles in OS. We therefore focused on biometals in the brain with DS. In this study, we analyzed the profile of elements, including biometals, in the brain of Ts1Cje mice, a widely used genetic model of DS. An inductively coupled plasma-mass spectrometry (ICP-MS)-based comparative metallomic/elementomic analysis of Ts1Cje mouse brain revealed a higher level of copper in the hippocampus and cerebral cortex, but not in the striatum, in comparison to wild-type littermates. The expression of the copper transporter CTR1, which is involved in the transport of copper into cells, was decreased in the ependymal cells of Ts1Cje mice, suggesting a decrease in the CTR1-mediated transport of copper into the ependymal cells, which excrete copper into the cerebrospinal fluid. To evaluate the pathological significance of the accumulation of copper in the brain of Ts1Cje mice, we examined the effects of a diet with a low copper content (LoCD) on the elevated lipid peroxidation, the accumulation of hyperphosphorylated tau, and some behavioral anomalies. Reducing the copper concentration in the brain by an LoCD restored the enhanced lipid peroxidation and phosphorylation of tau in the brain and reduced anxiety-like behavior, but not hyperactivity or impaired spatial leaning, in Ts1Cje mice. The findings highlight the reduction of accumulation of copper in the brain may be a novel therapeutic strategy for DS.


Subject(s)
Anxiety/prevention & control , Brain/pathology , Copper/metabolism , Disease Models, Animal , Down Syndrome/pathology , Oxidative Stress , Animals , Anxiety/metabolism , Anxiety/pathology , Behavior, Animal , Brain/drug effects , Brain/metabolism , Copper Transport Proteins/metabolism , Down Syndrome/metabolism , Down Syndrome/psychology , Lipid Peroxidation , Male , Mice , Mice, Inbred C57BL , Phosphorylation
14.
Immunology ; 155(1): 99-111, 2018 09.
Article in English | MEDLINE | ID: mdl-29569388

ABSTRACT

Although interleukin (IL)-33 is a candidate for the aggravation of asthma, the mechanisms underlying antigen-specific IL-33 production in the lung are unclear. Therefore, we analysed the mechanisms in mice. Intra-tracheal administration of ovalbumin (OVA) evoked increases in IL-33 and IL-33 mRNA in the lungs of both non-sensitized and OVA-sensitized mice, and the increases in the sensitized mice were significantly higher than in the non-sensitized mice. However, intra-tracheal administration of bovine serum albumin did not increase the IL-33 level in the OVA-sensitized mice. Depletion of neither mast cells/basophils nor CD4+ cells abolished the OVA-induced IL-33 production in sensitized mice, suggesting that the antigen recognition leading to the IL-33 production was not related with either antigen-specific IgE-bearing mast cells/basophils or memory CD4+ Th2 cells. When a fluorogenic substrate-labelled OVA (DQ-OVA) was intra-tracheally administered, the lung cells of sensitized mice incorporated more DQ-OVA than those of non-sensitized mice. The lung cells incorporating DQ-OVA included B-cells and alveolar macrophages. The allergic IL-33 production was significantly reduced by treatment with anti-FcγRII/III mAb. Depletion of alveolar macrophages by clodronate liposomes significantly suppressed the allergic IL-33 production, whereas depletion of B-cells by anti-CD20 mAb did not. These results suggest that the administered OVA in the lung bound antigen-specific IgG Ab, and then alveolar macrophages incorporated the immune complex through FcγRII/III on the cell surface, resulting in IL-33 production in sensitized mice. The mechanisms underlying the antigen-specific IL-33 production may aid in development of new pharmacotherapies.


Subject(s)
Interleukin-33/biosynthesis , Macrophages, Alveolar/immunology , Receptors, IgG/immunology , Animals , Antibodies, Monoclonal/immunology , Antigen-Antibody Reactions , Interleukin-33/immunology , Macrophages, Alveolar/cytology , Mice , Mice, Inbred BALB C
15.
Brain Sci ; 7(4)2017 Apr 21.
Article in English | MEDLINE | ID: mdl-28430122

ABSTRACT

Diverse '-omics' technologies permit the comprehensive quantitative profiling of a variety of biological molecules. Comparative '-omics' analyses, such as transcriptomics and proteomics, are powerful and useful tools for unraveling the molecular pathomechanisms of various diseases. As enhanced oxidative stress has been demonstrated in humans and mice with Down syndrome (DS), a redox proteomic analysis is useful for understanding how enhanced oxidative stress aggravates the state of individuals with oxidative stress-related disorders. In this review, '-omics' analyses in humans with DS and mouse models of DS are summarized, and the molecular dissection of this syndrome is discussed.

16.
Exp Neurol ; 293: 1-12, 2017 07.
Article in English | MEDLINE | ID: mdl-28336394

ABSTRACT

Ts1Cje mice have a segmental trisomy of chromosome 16 that is orthologous to human chromosome 21 and display Down syndrome-like cognitive impairments. Despite the occurrence of affective and emotional impairments in patients with Down syndrome, these parameters are poorly documented in Down syndrome mouse models, including Ts1Cje mice. Here, we conducted comprehensive behavioral analyses, including anxiety-, sociability-, and depression-related tasks, and biochemical analyses of monoamines and their metabolites in Ts1Cje mice. Ts1Cje mice showed enhanced locomotor activity in novel environments and increased social contact with unfamiliar partners when compared with wild-type littermates, but a significantly lower activity in familiar environments. Ts1Cje mice also exhibited some signs of decreased depression like-behavior. Furthermore, Ts1Cje mice showed monoamine abnormalities, including increased extracellular dopamine and serotonin, and enhanced catabolism in the striatum and ventral forebrain. This study constitutes the first report of deviated monoamine metabolism that may help explain the basis for abnormal behaviors, including the environmental stimuli-triggered hyperactivity, increased sociability and decreased depression-like behavior in Ts1Cje mice.


Subject(s)
Brain/metabolism , Cognition Disorders/etiology , Dopamine/metabolism , Down Syndrome , Environment , Hyperkinesis/etiology , Serotonin/metabolism , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase 1 Family , Animals , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Catechol O-Methyltransferase/metabolism , Chromosomes, Human, Pair 16/genetics , Disease Models, Animal , Down Syndrome/complications , Down Syndrome/genetics , Down Syndrome/pathology , Exploratory Behavior , Female , Hyperkinesis/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Retinal Dehydrogenase , Trisomy/genetics , Tyrosine 3-Monooxygenase/metabolism
17.
Biochem Biophys Res Commun ; 471(1): 15-20, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26850849

ABSTRACT

Group IVA phospholipase A2 (IVA-PLA2), which generates arachidonate, plays a role in inflammation. IVA-PLA2-deficiency reduced hepatotoxicity and hepatocyte cell death in mice that received a single dose of carbon tetrachloride (CCl4) without any inhibitory effects on CCl4-induced lipid peroxidation. An immunoblot analysis of extracts from wild-type mouse- and IVA-PLA2 KO mouse-derived primary hepatocytes that transiently expressed microtubule-associated protein 1 light chain 3B (LC3) revealed a higher amount of LC3-II, a typical index of autophagosome formation, in IVA-PLA2-deficient cells, suggesting the enhancement of constitutive autophagy. IVA-PLA2 may promote CCl4-induced cell death through the suppression of constitutive autophagy in hepatocytes.


Subject(s)
Autophagy/drug effects , Chemical and Drug Induced Liver Injury/enzymology , Chemical and Drug Induced Liver Injury/pathology , Group IV Phospholipases A2/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , Animals , Apoptosis/drug effects , Carbon Tetrachloride , Cells, Cultured , Chemical and Drug Induced Liver Injury/etiology , Group IV Phospholipases A2/genetics , Hepatocytes/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
18.
J Pharmacol Exp Ther ; 356(3): 604-14, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26699145

ABSTRACT

We have previously shown that high-fat cholesterol diet (HFCD)-induced fatty liver and carbon tetrachloride (CCl4)-induced hepatic fibrosis are reduced in mice deficient in group IVA phospholipase A2 (IVA-PLA2), which plays a role in inflammation. We herein demonstrate the beneficial effects of ASB14780 (3-[1-(4-phenoxyphenyl)-3-(2-phenylethyl)-1H-indol-5-yl]propanoic acid 2-amino-2-(hydroxymethyl)propane-1,3-diol salt), an orally active IVA-PLA2 inhibitor, on the development of fatty liver and hepatic fibrosis in mice. The daily coadministration of ASB14780 markedly ameliorated liver injury and hepatic fibrosis following 6 weeks of treatment with CCl4. ASB14780 markedly attenuated the CCl4-induced expression of smooth muscle α-actin (α-SMA) protein and the mRNA expression of collagen 1a2, α-SMA, and transforming growth factor-ß1 in the liver, and inhibited the expression of monocyte/macrophage markers, CD11b and monocyte chemotactic protein-1, while preventing the recruitment of monocytes/macrophages to the liver. Importantly, ASB14780 also reduced the development of fibrosis even in matured hepatic fibrosis. Additionally, ASB14780 also reduced HFCD-induced lipid deposition not only in the liver, but also in already established fatty liver. Furthermore, treatment with ASB14780 suppressed the HFCD-induced expression of lipogenic mRNAs. The present findings suggest that an IVA-PLA2 inhibitor, such as ASB14780, could be useful for the treatment of nonalcoholic fatty liver diseases, including fatty liver and hepatic fibrosis.


Subject(s)
Group IV Phospholipases A2/antagonists & inhibitors , Indoles/administration & dosage , Non-alcoholic Fatty Liver Disease/drug therapy , Phospholipase A2 Inhibitors/administration & dosage , Propionates/administration & dosage , Administration, Oral , Animals , Enzyme Inhibitors/administration & dosage , Group IV Phospholipases A2/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/enzymology
19.
Eur J Pharmacol ; 757: 34-41, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25797285

ABSTRACT

Although interleukin (IL)-33 is a candidate aggravator of asthma, the cellular sources of IL-33 in the lungs during the progression of antigen-induced airway inflammation remain unclear. Furthermore, it has not been determined whether the antigen-induced production of IL-33 can be pharmacologically modulated in vivo. In this study, we examined the production of IL-33 in the lungs of sensitized mice during multiple intratracheal challenges with the antigen, ovalbumin. The 1st challenge clearly induced the IL-33 production in the lungs, and it was enhanced by the 2nd-4th challenges. IL-33 mRNA transcription was also induced after these challenges. An immunohistochemical analysis revealed that the cellular sources of IL-33 after the 1st challenge were mainly bronchial epithelial cells, while those after the 3rd challenge were not only the epithelial cells, but also inflammatory cells that infiltrated the lungs. Flow cytometric analyses indicated that approximately 20% and 10% of the IL-33-producing cells in the lungs were M2 macrophages and conventional dendritic cells, respectively. A systemic treatment with dexamethasone before the 1st challenge potently suppressed the IL-33 production. When dexamethasone was administered before the respective challenges, production of the IL-33 protein and the infiltration of IL-33-producing M2 macrophages and dendritic cells into the lungs in the 3rd challenge were also suppressed. In conclusion, the cellular sources of IL-33 in the lungs were dynamically altered during multiple challenges: not only bronchial epithelial cells, but also the M2 macrophages and dendritic cells that infiltrated the lungs produced IL-33. The production of IL-33 was susceptible to the glucocorticoid treatment.


Subject(s)
Antigens/immunology , Glucocorticoids/pharmacology , Interleukin-33/biosynthesis , Lung/drug effects , Lung/metabolism , Animals , Dexamethasone/pharmacology , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Inflammation/immunology , Inflammation/metabolism , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33/genetics , Leukocytes/drug effects , Leukocytes/immunology , Leukocytes/metabolism , Lung/immunology , Mice , Mice, Inbred BALB C , Ovalbumin/immunology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Interleukin/metabolism , Transcription, Genetic/drug effects , Transcription, Genetic/immunology
20.
Nutrients ; 6(8): 3336-52, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25153972

ABSTRACT

PURPOSE: Piperine, a major alkaloid of black pepper (Piper nigrum) and long pepper (Piper longum), was shown to have anti-inflammatory activity through the suppression of cyclooxygenase (COX)-2 gene expression and enzyme activity. It is also reported to exhibit anti-platelet activity, but the mechanism underlying this action remains unknown. In this study, we investigated a putative anti-platelet aggregation mechanism involving arachidonic acid (AA) metabolism and how this compares with the mechanism by which it inhibits macrophage inflammatory responses; METHODS: Rabbit platelets and murine macrophage RAW264.7 cells were treated with piperine, and the effect of piperine on the activity of AA-metabolizing enzymes, including cytosolic phospholipase A2 (cPLA2), COX-1, COX-2, and thromboxane A2 (TXA2) synthase, as well as its effect on AA liberation from the plasma membrane components, were assessed using isotopic labeling methods and enzyme immunoassay kit; RESULTS: Piperine significantly suppressed AA liberation by attenuating cPLA2 activity in collagen-stimulated platelets. It also significantly inhibited the activity of TXA2 synthase, but not of COX-1, in platelets. These results suggest that piperine inhibits platelet aggregation by attenuating cPLA2 and TXA2 synthase activities, rather than through the inhibition of COX-1 activity. On the other hand, piperine significantly inhibited lipopolysaccharide-induced generation of prostaglandin (PG)E2 and PGD2 in RAW264.7 cells by suppressing the activity of COX-2, without effect on cPLA2; CONCLUSION: Our findings indicate that piperine inhibits platelet aggregation and macrophage inflammatory response by different mechanisms.


Subject(s)
Alkaloids/pharmacology , Benzodioxoles/pharmacology , Blood Platelets/drug effects , Cyclooxygenase 1/metabolism , Macrophages/drug effects , Phospholipases A2/metabolism , Piperidines/pharmacology , Platelet Aggregation/drug effects , Polyunsaturated Alkamides/pharmacology , Thromboxane-A Synthase/metabolism , Animals , Arachidonic Acid/metabolism , Blood Platelets/metabolism , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Macrophages/metabolism , Male , Mice , Phospholipase A2 Inhibitors/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Rabbits , Thromboxane-A Synthase/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL