Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38608943

ABSTRACT

Dairy producers are experiencing production and animal welfare pressures from the increasing frequency and severity of heat stress events due to global climate change. Offspring performance during the pre-weaning and lactating periods is compromised when exposed to heat stress during late gestation (in utero). However, knowledge of the lingering impacts of in utero heat stress on yearling dairy heifers is limited. Herein, we investigated the long-term effects of in utero heat stress on heifer growth, feed efficiency, and enteric methane emissions in post-pubertal heifers. During the last 56 d of gestation, 38 pregnant cows carrying heifer calves were exposed to either heat stress (IUHT; n = 17) or artificial cooling (IUCL; n = 21). At 18 ± 1 mo of age, the resulting IUCL and IUHT heifers were enrolled in the present 63-d study. Heifers were blocked by weight and randomly assigned to 3 pens with Calan gates. Body weights (BW) were recorded on 3 consecutive days at the start and end of the trial and used to calculate average daily gain (ADG). Body condition score (BCS), hip width, body length, and chest girth were measured at the start and end of the study. All heifers were fed a TMR comprised of 46.6% oatlage, 44.6% grass/alfalfa haylage, 7.7% male-sterile corn silage, 0.3% urea, and 0.8% mineral/vitamin supplement (DM basis). The TMR and refusal samples were obtained daily, composited weekly, and dried to calculate DMI. During the study, each pen had access to a GreenFeed unit for 8 ± 1d to measure CH4 and CO2 gas fluxes. During the last 3 d of measuring CH4 and CO2 fluxes, fecal samples were collected, composited by animal, dried, and analyzed to calculate NDF, OM, and DM digestibility. On the last day of fecal sampling, blood samples were also collected via coccygeal venipuncture, and gas chromatography time-of-flight mass spectrometry analysis was performed Residual feed intake (RFI; predicted DMI - observed DMI) and feed conversion efficiency (FCE; DMI/ADG) were calculated to estimate feed efficiency. No differences were found in initial or final BW, hip width, chest girth, or BCS; however, IUCL heifers were longer in body length compared with IUHT heifers. Dry matter intake, ADG, RFI, and FCE were similar between IUHT and IUCL heifers. In utero heat stressed and IUCL heifers produced similar amounts of CH4 and CO2, and no differences were found in the number of GreenFeed visits or latency to approach the GreenFeed. The concentrations of 6 blood metabolites involved in lipogenic pathways were different between in utero treatments. In conclusion, in utero heat stress does not seem to have long-term effects on feed efficiency or methane emissions during the post-pubertal growing phase; however, IUCL heifers maintained a body length advantage over their IUHT counterparts and differed in concentrations of several candidate metabolites that encourage further exploration of their potential function in key organs, such as the liver and mammary gland.

2.
Animals (Basel) ; 14(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38473101

ABSTRACT

Our objective in this exploratory study was to evaluate the long-term impacts of pre-weaning social isolation vs. contact on subsequent growth and feed efficiency of Holstein heifers. As pre-weaned calves, 41 heifers were housed individually (n = 15 heifers) or in pairs (n = 13 pairs; 26 heifers). At 18 months of age, heifers were blocked by body weight and randomly assigned to one of three pens within a block (six to eight heifers per pen; six pens total), with original pairs maintained. Body weight (BW), hip height and width, and chest girth were measured at the start and end of the study. Each pen was given 3 days of access to a GreenFeed greenhouse gas emissions monitor to assess potential physiological differences between treatments in enteric methane emissions or behavioral differences in propensity to approach a novel object. During the 9-week study, heifers were fed a common diet containing 62.3% male-sterile corn silage, 36.0% haylage, 0.7% urea, and 1.0% mineral (DM basis). To calculate daily feed intake, as-fed weights and refusals were recorded for individual heifers using Calan gates. Feed samples were collected daily, composited by week, and dried to calculate dry matter intake (DMI). Feed refusal and fecal samples were collected on 3 consecutive days at 3 timepoints, composited by heifer, dried, and analyzed to calculate neutral detergent fiber (NDF), organic matter (OM), and DM digestibility. Feed efficiency was calculated as feed conversion efficiency (FCE; DMI/average daily gain [ADG]) and residual feed intake (RFI; observed DMI-predicted DMI). Paired and individually housed heifers did not differ in DMI, ADG, FCE, or RFI. Although no differences were found in initial or final hip height, hip width, or chest girth, heifers which had been pair-housed maintained a greater BW than individually housed heifers during the trial. Methane production, intensity, and yield were similar between treatments. Pre-weaning paired or individual housing did not impact the number of visits or latency to approach the GreenFeed; approximately 50% of heifers in each treatment visited the GreenFeed within 8 h of exposure. Digestibility of OM, DM, and NDF were also similar between housing treatments. In conclusion, pre-weaning pair housing had no adverse effects on growth, feed efficiency, or methane emissions at 18 to 20 months of age.

3.
J Anim Sci ; 100(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36205250

ABSTRACT

For baled silages, production of clostridial fermentation products can be exacerbated by exceeding normal moisture targets (45% to 55%), and/or by the application of dairy slurry before harvest. Our objectives were to test a microbial inoculant as a mitigant of clostridial products in high-moisture, grass-legume (52% ± 13.8% cool-season grasses, 44.0% ± 14.0% legumes [predominately alfalfa]) baled silages in swards that were fertilized with dairy slurry. A secondary objective was to examine the effects of bale moisture and inoculation on the aerobic stability of these fermented silages following exposure to air. After the first-cutting was removed, three manure treatments were applied as a whole-plot factor: 1) control (no manure); 2) slurry applied immediately to stubble (63,250 L/ha); or 3) slurry applied after a 1-wk delay (57,484 L/ha). An interactive arrangement of bale moisture (64.1% or 48.4%) and inoculation (yes or no) served as a subplot term in the experiment. The inoculant contained both homolactic (Lactococcus lactis 0224) and heterolactic (Lactobacillus buchneri LB1819) bacteria. The experimental design was analyzed as a randomized complete block with four replications, and the study included 48 experimental units (1.2 × 1.2-m round bales). Total fermentation acids were affected (P ≤ 0.021) by slurry application strategies, but this was likely related to inconsistent bale moisture across slurry-application treatments. Concentrations of butyric acid were low, and there were no detectable contrasts comparing manure treatments (mean = 0.05%; P ≥ 0.645). Bale moisture affected all measures of fermentation, with bales made at 64.1% moisture exhibiting a more acidic final pH (4.39 vs. 4.63; P < 0.001), less residual water-soluble carbohydrates (2.1% vs. 5.1%; P < 0.001), as well as greater lactic acid (4.64% vs. 2.46%; P < 0.001), acetic acid (2.26% vs. 1.32%; P < 0.001), and total fermentation acids (7.37% vs. 3.97%; P < 0.001). Inoculation also reduced pH (4.47 vs. 4.56; P = 0.029), and increased acetic acid (1.97% vs. 1.61%; P < 0.001) and 1,2-propanediol (1.09% vs. 0.72%; P < 0.001) compared to controls. During a 34-d aerobic exposure period, maximum surface bale temperatures were not affected (P ≥ 0.186) by any aspect of treatment, likely due to the prevailing cool ambient temperatures; however, yeast counts were numerically lower in response to greater (P < 0.001) production of acetic acid that was stimulated by both high bale moisture and inoculation.


The objectives of this research were to test an inoculant to mitigate production of clostridial products in high-moisture silage bales, where forages were treated with dairy slurry during the preceding growth cycle. Despite the application of dairy slurry, as well as greater-than-recommended bale moisture, only minimal concentrations of typical clostridial products were observed following fermentation. Inoculation had no effect on final concentrations of either ammonia-N or butyric acid. The lack of clostridial response might be explained by numerous strong rainfall events during the growth of these forages, prompt wrapping following baling, substrate adequacy, as well as an exceptionally low buffering capacity, particularly compared to most mixed, legume-grass swards harvested previously at this location. As a result, using a combination hetero- and homolactic inoculant to mitigate clostridial activity was inconclusive. Both bale moisture and inoculation had positive effects on concentrations of acetic acid following fermentation, and resulted in numerically reduced counts of yeasts following a 34-d exposure to air: however, surface bale temperatures remained cool, regardless of treatment, largely in response to the cool ambient temperatures that occurred in central Wisconsin during November.


Subject(s)
Poaceae , Silage , Animals , Silage/analysis , Fermentation , Manure , Nutritive Value , Medicago sativa , Vegetables , Acetic Acid , Fertilization , Zea mays/microbiology , Aerobiosis
4.
J Dairy Sci ; 102(11): 9932-9942, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31521350

ABSTRACT

This study was carried out to evaluate the nutrient intakes and growth of dairy heifers offered an alfalfa silage-corn silage diet (CON; 14.3% crude protein, 61.1% total digestible nutrients, 47.9% neutral detergent fiber) compared with diets containing 1 of 2 types of sorghum-sudangrass (SS) silages: conventional or photoperiod sensitive. The objective of the study was to determine the potential to use SS to control dry matter (DM) and nutrient intakes and weight gain. Both diets were similar in nutrient composition, with approximately 13% crude protein, 60 to 61% total digestible nutrients, and 55% neutral detergent fiber. Seventy-two Holstein heifers (16-18 mo at study initiation) were blocked by initial body weight (light = 422 ± 12.8 kg; medium = 455 ± 14.8 kg; heavy = 489 ± 16.7 kg) with 3 pens assigned to each weight block (8 heifers/pen; 24 heifers/block). The 3 diets were randomly allocated to the pens within each block and offered for 12 wk. Heifers offered the CON diet had greater DM, protein, and energy intakes compared with those offered the SS silage-based diets due to the greater neutral detergent fiber concentration of the SS diets. With lower DM and nutrient intakes, average daily gain was in the recommended range (0.8-1 kg/d for Holstein heifers) for heifers offered the SS silage-based diets (mean of 0.92 kg/d for both SS diets vs. 1.11 kg/d for CON). Sorting behaviors for heifers offered both SS diets were more aggressive against long, medium, and short particles compared with those of heifers offered the CON diet; however, heifers sorted large particles from photoperiod-sensitive silage more aggressively than those from conventional silage. Based on this study, SS silage-based diets can control the DM and energy intakes for heifers and maintain optimum growth rates, with harvesting at a shorter chop length likely helping to alleviate sorting issues.


Subject(s)
Animal Feed , Cattle , Diet/veterinary , Animal Feed/analysis , Animals , Body Weight , Cattle/growth & development , Dietary Fiber/metabolism , Digestion , Energy Intake , Female , Nutrients , Poaceae , Silage , Sorghum , Zea mays
5.
PLoS One ; 12(9): e0184939, 2017.
Article in English | MEDLINE | ID: mdl-28922379

ABSTRACT

Serotonin is known to regulate energy and calcium homeostasis in several mammalian species. The objective of this study was to determine if pre-partum infusions of 5-hydroxytryptophan (5-HTP), the immediate precursor to serotonin synthesis, could modulate energy homeostasis at the level of the hepatocyte in post-partum Holstein and Jersey dairy cows. Twelve multiparous Holstein cows and twelve multiparous Jersey cows were intravenously infused daily for approximately 7 d pre-partum with either saline or 1 mg/kg bodyweight of 5-HTP. Blood was collected for 14 d post-partum and on d30 post-partum. Liver biopsies were taken on d1 and d7 post-partum. There were no changes in the circulating concentrations of glucose, insulin, glucagon, non-esterified fatty acids, or urea nitrogen in response to treatment, although there were decreased beta-hydroxybutyrate concentrations with 5-HTP treatment around d6 to d10 post-partum, particularly in Jersey cows. Cows infused with 5-HTP had increased hepatic serotonin content and increased mRNA expression of the serotonin 2B receptor on d1 and d7 post-partum. Minimal changes were seen in the hepatic mRNA expression of various gluconeogenic enzymes. There were no changes in the mRNA expression profile of cell-cycle progression marker cyclin-dependent kinase 4 or apoptotic marker caspase 3, although proliferating cell nuclear antigen expression tended to be increased in Holstein cows infused with 5-HTP on d1 post-partum. Immunofluorescence assays showed an increased number of CASP3- and Ki67-positive cells in Holstein cows infused with 5-HTP on d1 post-partum. Given the elevated hepatic serotonin content and increased mRNA abundance of 5HTR2B, 5-HTP infusions may be stimulating an autocrine-paracrine adaptation to lactation in the Holstein cow liver.


Subject(s)
Lactation/blood , Liver/metabolism , Postpartum Period/blood , Serotonin/blood , Animals , Blood Glucose/metabolism , Caspase 3/metabolism , Cattle , Cyclin-Dependent Kinase 4/metabolism , Fatty Acids, Nonesterified/blood , Female , Glucagon/blood , Insulin/blood , Ki-67 Antigen/metabolism , Pregnancy , Receptor, Serotonin, 5-HT2B/biosynthesis
6.
J Endocrinol ; 230(1): 105-23, 2016 07.
Article in English | MEDLINE | ID: mdl-27390301

ABSTRACT

Hypocalcemia is a metabolic disorder that affects dairy cows during the transition from pregnancy to lactation. Twelve multiparous Holstein cows and twelve multiparous Jersey cows were intravenously infused daily for approximately 7 days prepartum with either saline or 1.0mg/kg bodyweight of the immediate precursor to serotonin synthesis, 5hydroxy-l-tryptophan (5-HTP). On infusion days, blood was collected before, after, and at 2, 4, and 8h postinfusion. Blood and urine were collected daily before the infusion period, for 14 days postpartum and on day 30 postpartum. Milk was collected daily during the postpartum period. Feed intake and milk yield were unaffected by 5-HTP infusion postpartum. Cows infused with 5-HTP had elevated circulating serotonin concentrations prepartum. Infusion with 5-HTP induced a transient hypocalcemia in Jersey cows prepartum, but not in any other treatment. Holstein cows infused with saline had the highest milk calcium on the day of and day after parturition. Postpartum, circulating total calcium tended to be elevated, and urine deoxypyridinoline (DPD) concentrations were elevated in Holstein cows infused with 5-HTP. Overall, Jerseys had higher urine DPD concentrations postpartum when compared with Holsteins. Taken together, these data warrant further investigation of the potential therapeutic benefit of 5-HTP administration prepartum for prevention of hypocalcemia. Further research should focus on delineation of mechanisms associated with 5-HTP infusion that control calcium homeostasis during the peripartum period in Holstein and Jersey cows.


Subject(s)
5-Hydroxytryptophan/pharmacology , Calcium/analysis , Milk/chemistry , Serotonin/blood , Animals , Body Weight/drug effects , Calcium/blood , Cattle , Eating/drug effects , Eating/physiology , Energy Metabolism/drug effects , Peripartum Period
7.
Vet Clin North Am Food Anim Pract ; 32(2): 303-17, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27161393

ABSTRACT

Heifer development depends on nutritional management decisions throughout all growing phases. Optimizing costs to raise heifers improves profitability of dairy farms. Feed costs for heifers make up 50% of heifer costs. Required growth rates depend on the desired age at first calving and estimated mature body weight. Intensive milk feeding improves calf growth and subsequent milk production. Prepubertal heifers should be fed for adequate gains to calve between 22 and 24 months of age. Controlling gains in pregnant heifers to limit fat deposition is possible using limit-feeding of a higher concentrate diet or using high-fiber forages to reduce diet energy.


Subject(s)
Cattle/growth & development , Dairying , Diet/veterinary , Lactation/physiology , Reproduction/physiology , Animal Nutritional Physiological Phenomena , Animals , Body Weight , Feeding Behavior , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...