Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(51): 59714-59721, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38095074

ABSTRACT

Engineering the response to external signals in mechanically switchable hydrogels is important to promote smart materials applications. However, comparably little attention has focused on embedded precision mechanisms for autonomous nonlinear response in mechanical profiles in hydrogels, and we lack understanding of how the behavior from the molecular scale transduces to the macroscale. Here, we design a nonlinear stress-strain response into hydrogels by engineering sacrificial DNA hairpin loops into model network hydrogels formed from star-shaped building blocks. We characterize the force-extension response of single DNA hairpins and are able to describe how the specific topology influences the nonlinear mechanical behavior at different length scales. For this purpose, we utilize force spectroscopy as well as microscopic and macroscopic deformation tests. This study contributes to a better understanding of designing nonlinear strain-adaptive features into hydrogel materials.


Subject(s)
Hydrogels , Smart Materials , Hydrogels/chemistry , Mechanical Phenomena , DNA/chemistry
2.
Angew Chem Int Ed Engl ; 61(45): e202208951, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36112754

ABSTRACT

Liquid-liquid phase separation provides a versatile approach to fabricating cell-mimicking coacervates. Recently, it was discovered that phase separation of single-stranded DNA (ssDNA) allows for forming protocells and microgels in multicomponent systems. However, the mechanism of the ssDNA phase separation is not comprehensively understood. Here, we present mechanistic insights into the metal-dependent phase separation of ssDNA and leverage this understanding for a straightforward formation of all-DNA droplets. Two phase separation temperatures are found that correspond to the formation of primary nuclei and a growth process. Ca2+ allows for irreversible, whereas Mg2+ leads to reversible phase separation. Capitalizing on these differences makes it possible to control the information transfer of one-component DNA droplets and two-component core-shell protocells. This study introduces new kinetic traps of phase separating ssDNA that lead to new phenomena in cell-mimicking systems.


Subject(s)
Artificial Cells , DNA , DNA, Single-Stranded
3.
J Am Chem Soc ; 142(39): 16610-16621, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32902960

ABSTRACT

Solid-phase oligonucleotide synthesis (SPOS) based on phosphoramidite chemistry is currently the most widespread technique for DNA and RNA synthesis but suffers from scalability limitations and high reagent consumption. Liquid-phase oligonucleotide synthesis (LPOS) uses soluble polymer supports and has the potential of being scalable. However, at present, LPOS requires 3 separate reaction steps and 4-5 precipitation steps per nucleotide addition. Moreover, long acid exposure times during the deprotection step degrade sequences with high A content (adenine) due to depurination and chain cleavage. In this work, we present the first one-pot liquid-phase DNA synthesis technique which allows the addition of one nucleotide in a one-pot reaction of sequential coupling, oxidation, and deprotection followed by a single precipitation step. Furthermore, we demonstrate how to suppress depurination during the addition of adenine nucleotides. We showcase the potential of this technique to prepare high-purity 4-arm PEG-T20 (T = thymine) and 4-arm PEG-A20 building blocks in multigram scale. Such complementary 4-arm PEG-DNA building blocks reversibly self-assemble into supramolecular model network hydrogels and facilitate the elucidation of bond lifetimes. These model network hydrogels exhibit new levels of mechanical properties (storage modulus, bond lifetimes) in DNA bonds at room temperature (melting at 44 °C) and thus open up pathways to next-generation DNA materials programmable through sequence recognition and available for macroscale applications.


Subject(s)
DNA/chemical synthesis , Hydrogels/chemical synthesis , Polyethylene Glycols/chemistry , DNA/chemistry , Hydrogels/chemistry , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...