Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38326456

ABSTRACT

Stress is thought to be an important contributing factor for eating disorders; however, neural substrates underlying the complex relationship between stress and appetite are not fully understood. Using in vivo recordings from awake behaving mice, we show that various acute stressors activate catecholaminergic nucleus tractus solitarius (NTSTH) projections in the paraventricular hypothalamus (PVH). Remarkably, the resulting adrenergic tone inhibits MC4R-expressing neurons (PVHMC4R), which are known for their role in feeding suppression. We found that PVHMC4R silencing encodes negative valence in sated mice and is required for avoidance induced by visceral malaise. Collectively, these findings establish PVHMC4R neurons as an effector of stress-activated brainstem adrenergic input in addition to the well-established hypothalamic-pituitary-adrenal axis. Convergent modulation of stress and feeding by PVHMC4R neurons implicates NTSTH → PVHMC4R input in stress-associated appetite disorders.

2.
Cell Rep ; 43(1): 113630, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38165803

ABSTRACT

Opioids are generally known to promote hedonic food consumption. Although much of the existing evidence is primarily based on studies of the mesolimbic pathway, endogenous opioids and their receptors are widely expressed in hypothalamic appetite circuits as well; however, their role in homeostatic feeding remains unclear. Using a fluorescent opioid sensor, deltaLight, here we report that mediobasal hypothalamic opioid levels increase by feeding, which directly and indirectly inhibits agouti-related protein (AgRP)-expressing neurons through the µ-opioid receptor (MOR). AgRP-specific MOR expression increases by energy surfeit and contributes to opioid-induced suppression of appetite. Conversely, its antagonists diminish suppression of AgRP neuron activity by food and satiety hormones. Mice with AgRP neuron-specific ablation of MOR expression have increased fat preference without increased motivation. These results suggest that post-ingestion release of endogenous opioids contributes to AgRP neuron inhibition to shape food choice through MOR signaling.


Subject(s)
Analgesics, Opioid , Neurons , Animals , Mice , Agouti-Related Protein/metabolism , Analgesics, Opioid/pharmacology , Eating , Hypothalamus/metabolism , Neurons/metabolism , Signal Transduction
3.
Nat Neurosci ; 27(1): 102-115, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37957320

ABSTRACT

Food intake follows a predictable daily pattern and synchronizes metabolic rhythms. Neurons expressing agouti-related protein (AgRP) read out physiological energetic state and elicit feeding, but the regulation of these neurons across daily timescales is poorly understood. Using a combination of neuron dynamics measurements and timed optogenetic activation in mice, we show that daily AgRP-neuron activity was not fully consistent with existing models of homeostatic regulation. Instead of operating as a 'deprivation counter', AgRP-neuron activity primarily followed the circadian rest-activity cycle through a process that required an intact suprachiasmatic nucleus and synchronization by light. Imposing novel feeding patterns through time-restricted food access or periodic AgRP-neuron stimulation was sufficient to resynchronize the daily AgRP-neuron activity rhythm and drive anticipatory-like behavior through a process that required DMHPDYN neurons. These results indicate that AgRP neurons integrate time-of-day information of past feeding experience with current metabolic needs to predict circadian feeding time.


Subject(s)
Neurons , Suprachiasmatic Nucleus , Animals , Mice , Agouti-Related Protein , Feeding Behavior/physiology , Neurons/physiology
4.
Nat Commun ; 14(1): 6602, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857606

ABSTRACT

Norepinephrine (NE) is a well-known appetite regulator, and the nor/adrenergic system is targeted by several anti-obesity drugs. To better understand the circuitry underlying adrenergic appetite control, here we investigated the paraventricular hypothalamic nucleus (PVN), a key brain region that integrates energy signals and receives dense nor/adrenergic input, using a mouse model. We found that PVN NE level increases with signals of energy deficit and decreases with food access. This pattern is recapitulated by the innervating catecholaminergic axon terminals originating from NTSTH-neurons. Optogenetic activation of rostral-NTSTH → PVN projection elicited strong motivation to eat comparable to overnight fasting whereas its inhibition attenuated both fasting-induced & hypoglycemic feeding. We found that NTSTH-axons functionally targeted PVNMC4R-neurons by predominantly inhibiting them, in part, through α1-AR mediated potentiation of GABA release from ARCAgRP presynaptic terminals. Furthermore, glucoprivation suppressed PVNMC4R activity, which was required for hypoglycemic feeding response. These results define an ascending nor/adrenergic circuit, NTSTH → PVNMC4R, that conveys peripheral hunger signals to melanocortin pathway.


Subject(s)
Hunger , Melanocortins , Melanocortins/metabolism , Adrenergic Agents/metabolism , Appetite , Paraventricular Hypothalamic Nucleus/metabolism , Norepinephrine/metabolism , Hypoglycemic Agents/metabolism
5.
Mol Metab ; 69: 101676, 2023 03.
Article in English | MEDLINE | ID: mdl-36682413

ABSTRACT

OBJECTIVE: Serotonin (5HT) is a well-known anorexigenic molecule, and 5HT neurons of dorsal raphe nucleus (DRN) have been implicated in suppression of feeding; however, the downstream circuitry is poorly understood. Here we explored major projections of DRN5HT neurons for their capacity to modulate feeding. METHODS: We used optogenetics to selectively activate DRN5HT axonal projections in hypothalamic and extrahypothalamic areas and monitored food intake. We next used fiber photometry to image the activity dynamics of DRN5HT axons and 5HT levels in projection areas in response feeding and metabolic hormones. Finally, we used electrophysiology to determine how DRN5HT axons affect downstream neuron activity. RESULTS: We found that selective activation of DRN5HT axons in (DRN5HT → LH) and (DRN5HT → BNST) suppresses feeding whereas activating medial hypothalamic projections has no effect. Using in vivo imaging, we found that food access and satiety hormones activate DRN5HT projections to LH where they also rapidly increase extracellular 5HT levels. Optogenetic mapping revealed that DRN5HT → LHvGAT and DRN5HT → LHvGlut2 connections are primarily inhibitory and excitatory respectively. Further, in addition to its direct action on LH neurons, we found that 5HT suppresses GABA release from presynaptic terminals arriving from AgRP neurons. CONCLUSIONS: These findings define functionally redundant forebrain circuits through which DRN5HT neurons suppress feeding and reveal that these projections can be modulated by metabolic hormones.


Subject(s)
Dorsal Raphe Nucleus , Serotonergic Neurons , Dorsal Raphe Nucleus/metabolism , Serotonergic Neurons/metabolism , Serotonin/metabolism , Hypothalamus/metabolism , Hormones
6.
Cell Metab ; 34(2): 317-328.e6, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35108517

ABSTRACT

Excessive alcohol consumption is a major health and social issue in our society. Pharmacologic administration of the endocrine hormone fibroblast growth factor 21 (FGF21) suppresses alcohol consumption through actions in the brain in rodents, and genome-wide association studies have identified single nucleotide polymorphisms in genes involved with FGF21 signaling as being associated with increased alcohol consumption in humans. However, the neural circuit(s) through which FGF21 signals to suppress alcohol consumption are unknown, as are its effects on alcohol consumption in higher organisms. Here, we demonstrate that administration of an FGF21 analog to alcohol-preferring non-human primates reduces alcohol intake by 50%. Further, we reveal that FGF21 suppresses alcohol consumption through a projection-specific subpopulation of KLB-expressing neurons in the basolateral amygdala. Our results illustrate how FGF21 suppresses alcohol consumption through a specific population of neurons in the brain and demonstrate its therapeutic potential in non-human primate models of excessive alcohol consumption.


Subject(s)
Fibroblast Growth Factors , Genome-Wide Association Study , Alcohol Drinking , Animals , Endocrine System/metabolism , Fibroblast Growth Factors/metabolism
7.
Neuron ; 109(8): 1314-1332.e5, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33711258

ABSTRACT

Store-operated calcium entry (SOCE) is activated by depletion of Ca2+ from the endoplasmic reticulum (ER) and mediated by stromal interaction molecule (STIM) proteins. Here, we show that in rat and mouse hippocampal neurons, acute ER Ca2+ depletion increases presynaptic Ca2+ levels and glutamate release through a pathway dependent on STIM2 and the synaptic Ca2+ sensor synaptotagmin-7 (syt7). In contrast, synaptotagmin-1 (syt1) can suppress SOCE-mediated spontaneous release, and STIM2 is required for the increase in spontaneous release seen during syt1 loss of function. We also demonstrate that chronic ER stress activates the same pathway leading to syt7-dependent potentiation of spontaneous glutamate release. During ER stress, inhibition of SOCE or syt7-driven fusion partially restored basal neurotransmission and decreased expression of pro-apoptotic markers, indicating that these processes participate in the amplification of ER-stress-related damage. Taken together, we propose that presynaptic SOCE links ER stress and augmented spontaneous neurotransmission, which may, in turn, facilitate neurodegeneration.


Subject(s)
Calcium/metabolism , Endoplasmic Reticulum Stress/physiology , Neurons/metabolism , Presynaptic Terminals/metabolism , Synaptic Transmission/physiology , Animals , Calcium Channels/metabolism , Calcium Signaling/physiology , Endoplasmic Reticulum/metabolism , Hippocampus/metabolism , Mice , Rats , Stromal Interaction Molecule 1/metabolism , Synaptotagmin I/metabolism
8.
Neuroendocrinology ; 110(3-4): 258-270, 2020.
Article in English | MEDLINE | ID: mdl-31154452

ABSTRACT

BACKGROUND: Melanin-concentrating hormone (MCH)-expressing neurons have been implicated in regulation of energy homeostasis and reward, yet the role of their electrical activity in short-term appetite and reward modulation has not been fully understood. OBJECTIVES: We investigated short-term behavioral and physiological effects of MCH neuron activity manipulations. METHODS: We used optogenetic and chemogenetic approaches in Pmch-cre transgenic mice to acutely stimulate/inhibit MCH neuronal activity while probing feeding, locomotor activity, anxiety-like behaviors, glucose homeostasis, and reward. RESULTS: MCH neuron activity is neither required nor sufficient for short-term appetite unless stimulation is temporally paired with consumption. MCH neuronal activation does not affect short-term locomotor activity, but inhibition improves glucose tolerance and is mildly anxiolytic. Finally, using two different operant tasks, we showed that activation of MCH neurons alone is sufficient to induce reward. CONCLUSIONS: Our results confirm diverse behavioral/physiological functions of MCH neurons and suggest a direct role in reward function.


Subject(s)
Appetite/physiology , Behavior, Animal/physiology , Blood Glucose/metabolism , Feeding Behavior/physiology , Hypothalamic Hormones/metabolism , Locomotion/physiology , Melanins/metabolism , Neurons/physiology , Pituitary Hormones/metabolism , Reward , Animals , Female , Homeostasis/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Optogenetics
9.
Cell Metab ; 31(2): 313-326.e5, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31839488

ABSTRACT

Glucose is the essential energy source for the brain, whose deficit, triggered by energy deprivation or therapeutic agents, can be fatal. Increased appetite is the key behavioral defense against hypoglycemia; however, the central pathways involved are not well understood. Here, we describe a glucoprivic feeding pathway by tyrosine hydroxylase (TH)-expressing neurons from nucleus of solitary tract (NTS), which project densely to the hypothalamus and elicit feeding through bidirectional adrenergic modulation of agouti-related peptide (AgRP)- and proopiomelanocortin (POMC)-expressing neurons. Acute chemogenetic inhibition of arcuate nucleus (ARC)-projecting NTSTH neurons or their target, AgRP neurons, impaired glucoprivic feeding induced by 2-Deoxy-D-glucose (2DG) injection. Neuroanatomical tracing results suggested that ARC-projecting orexigenic NTSTH neurons are largely distinct from neighboring catecholamine neurons projecting to parabrachial nucleus (PBN) that promotes satiety. Collectively, we describe a circuit organization in which an ascending pathway from brainstem stimulates appetite through key hunger neurons in the hypothalamus in response to hypoglycemia.


Subject(s)
Agouti-Related Protein/metabolism , Appetite Regulation , Hypoglycemia/metabolism , Hypothalamus/metabolism , Neurons/metabolism , Solitary Nucleus/metabolism , Animals , Female , Hypothalamus/cytology , Male , Mice , Mice, Inbred C57BL , Neurons/cytology , Solitary Nucleus/cytology
10.
Neurobiol Dis ; 121: 58-64, 2019 01.
Article in English | MEDLINE | ID: mdl-30240706

ABSTRACT

Prader-Willi and the related Schaaf-Yang Syndromes (PWS/SYS) are rare neurodevelopmental disorders characterized by overlapping phenotypes of high incidence of autism spectrum disorders (ASD) and neonatal feeding difficulties. Based on clinical and basic studies, oxytocin pathway defects are suggested to contribute disease pathogenesis but the mechanism has been poorly understood. Specifically, whether the impairment in oxytocin system is limited to neuropeptide levels and how the functional properties of broader oxytocin neuron circuits affected in PWS/SYS have not been addressed. Using cell type specific electrophysiology, we investigated basic synaptic and cell autonomous properties of oxytocin neurons in the absence of MAGEL2; a hypothalamus enriched ubiquitin ligase regulator that is inactivated in both syndromes. We observed significant suppression of overall ex vivo oxytocin neuron activity, which was largely contributed by altered synaptic input profile; with reduced excitatory and increased inhibitory currents. Our results suggest that dysregulation of oxytocin system goes beyond altered neuropeptide expression and synaptic excitation inhibition imbalance impairs overall oxytocin pathway function.


Subject(s)
Antigens, Neoplasm/physiology , Hypothalamus/physiology , Membrane Potentials , Neurons/physiology , Oxytocin/physiology , Proteins/physiology , Action Potentials , Animals , Antigens, Neoplasm/genetics , Excitatory Postsynaptic Potentials , Female , Inhibitory Postsynaptic Potentials , Male , Mice, Inbred C57BL , Mice, Transgenic , Proteins/genetics , Receptors, AMPA/metabolism
11.
Hum Mol Genet ; 27(18): 3129-3136, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29878108

ABSTRACT

Prader-Willi Syndrome (PWS) is a neurodevelopmental disorder causing social and learning deficits, impaired satiety and severe childhood obesity. Genetic underpinning of PWS involves deletion of a chromosomal region with several genes, including MAGEL2, which is abundantly expressed in the hypothalamus. Of appetite regulating hypothalamic cell types, both AGRP and POMC-expressing neurons contain Magel2 transcripts but the functional impact of its deletion on these cells has not been fully characterized. Here, we investigated these key neurons in Magel2-null mice in terms of the activity levels at different energy states as well as their behavioral function. Using cell type specific ex vivo electrophysiological recordings and in vivo chemogenetic activation approaches we evaluated impact of Magel2 deletion on AGRP and POMC-neuron induced changes in appetite. Our results suggest that POMC neuron activity profile as well as its communication with downstream targets is significantly compromised, while AGRP neuron function with respect to short term feeding is relatively unaffected in Magel2 deficiency.


Subject(s)
Agouti-Related Protein/genetics , Antigens, Neoplasm/genetics , Appetite/genetics , Prader-Willi Syndrome/genetics , Pro-Opiomelanocortin/genetics , Proteins/genetics , Animals , Appetite/physiology , Chromosome Deletion , Disease Models, Animal , Gene Expression Regulation , Humans , Hypothalamus/metabolism , Hypothalamus/pathology , Mice , Mice, Knockout , Neurons/pathology , Obesity/complications , Obesity/genetics , Obesity/physiopathology , Prader-Willi Syndrome/complications , Prader-Willi Syndrome/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...