Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Parasit Vectors ; 17(1): 104, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38431686

ABSTRACT

BACKGROUND: Mosquitoes belonging to the Anopheles gambiae sensu lato complex play a major role in malaria transmission across Africa. This study assessed the relative importance of members of An. gambiae s.l. in malaria transmission in two rural villages in the Republic of the Congo. METHODS: Adult mosquitoes were collected using electric aspirators from June to September 2022 in Djoumouna and Ntoula villages and were sorted by taxa based on their morphological features. Anopheles gambiae s.l. females were also molecularly identified. A TaqMan-based assay and a nested polymerase chain reaction (PCR) were performed to determine Plasmodium spp. in the mosquitoes. Entomological indexes were estimated, including man-biting rate, entomological inoculation rate (EIR), and diversity index. RESULTS: Among 176 mosquitoes collected, An. gambiae s.l. was predominant (85.8%), followed by Culex spp. (13.6%) and Aedes spp. (0.6%). Three members of the An. gambiae s.l. complex were collected in both villages, namely An. gambiae sensu stricto (74.3%), Anopheles coluzzii (22.9%) and Anopheles arabiensis (2.8%). Three Plasmodium species were detected in An. gambiae s.s. and An. coluzzii (Plasmodium falciparum, P. malariae and P. ovale), while only P. falciparum and P. malariae were found in An. arabiensis. In general, the Plasmodium infection rate was 35.1% (53/151) using the TaqMan-based assay, and nested PCR confirmed 77.4% (41/53) of those infections. The nightly EIR of An. gambiae s.l. was 0.125 infectious bites per person per night (ib/p/n) in Djoumouna and 0.08 ib/p/n in Ntoula. The EIR of An. gambiae s.s. in Djoumouna (0.11 ib/p/n) and Ntoula (0.04 ib/p/n) was higher than that of An. coluzzii (0.01 and 0.03 ib/p/n) and An. arabiensis (0.005 and 0.0 ib/p/n). CONCLUSIONS: This study provides baseline information on the dominant vectors and dynamics of malaria transmission in the rural areas of the Republic of the Congo during the dry season. In the two sampled villages, An. gambiae s.s. appears to play a predominant role in Plasmodium spp.


Subject(s)
Anopheles , Malaria, Falciparum , Malaria , Plasmodium , Humans , Male , Animals , Female , Seasons , Congo/epidemiology , Mosquito Vectors , Malaria/epidemiology , Plasmodium/genetics
2.
J Parasitol Res ; 2024: 9980715, 2024.
Article in English | MEDLINE | ID: mdl-38551013

ABSTRACT

Background: Natural medicinal products are commonly used as a remedy against malaria infections in African populations and have become a major source of information for the screening of new and more effective antiplasmodial molecules. Therefore, in vitro studies are needed to validate the efficacy of these medicinal products and to explore the potential effects of such drugs on the genetic diversity of Plasmodium falciparum. The current study has investigated the impact of some Beninese plant extracts with antiplasmodial activity on the genetic diversity of P. falciparum. Method: Five (5) ethanolic plant extracts (Dissotis rotundifolia, Ehretia cymosa Thonn, Hibiscus surattensis L., Cola millenii K. Shum, and Costus afer Ker Gawl) and a compound extracted from Ehretia cymosa Thonn (encoded CpE2) were tested against asexual stage parasites of a culture-adapted strain of P. falciparum. Subsequently, the P. falciparum Msp1 and Msp2 markers were genotyped, and the number of allelic variants and the multiplicity of infection (MOI) were compared between drug-exposed and unexposed parasites. Results: All plant extracts have shown inhibitory activity against asexual P. falciparum and selected new allelic variants of the Msp1 and Msp2 genes compared to unexposed parasites. The newly selected allelic variants were K1_100bp and RO33_300bp of the Msp1 gene and FC27_150bp, FC27_300bp, FC27_400bp, and FC27_600bp of the Msp2 gene. However, there was no significant difference in MOI between drug-exposed and unexposed parasites. Conclusion: Our study highlights a source for the selection of new Msp1 and Msp2 alleles after exposure to antimalarial drugs. These findings pave the way for further studies investigating the true roles of these newly selected alleles in P. falciparum.

3.
J Med Entomol ; 61(3): 808-814, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38381594

ABSTRACT

Malaria vector surveillance tools often incorporate features of hosts that are attractive to blood-seeking females. The recently developed host decoy trap (HDT) combines visual, thermal, and olfactory stimuli associated with human hosts and has shown great efficacy in terms of collecting malaria vectors. Synthetic odors and yeast-produced carbon dioxide (CO2) could prove useful by mimicking the human odors currently used in HDTs and provide standardized and easy-to-use olfactory attractants. The objective of this study was to test the attractiveness of various olfactory attractant cues in HDTs to capture malaria vectors. We compared 4 different odor treatments in outdoor field settings in southern Benin and western Burkina Faso: the standard HDT using a human, HDT with yeast-produced CO2, HDT with an artificial odor blend, and HDT with yeast-produced CO2 plus artificial odor blend. In both experimental sites, the standard HDT that incorporated a real human produced the greatest catch of Anopheles gambiae s.l (Diptera: Culicidae). The alternatives tested were still effective at collecting target vector species, although the most effective included CO2, either alone (Benin) or in combination with synthetic odor (Burkina Faso). The trap using synthetic human odor alone caught the fewest An. gambiae s.l. compared to the other baited traps. Both Anopheles coluzzii and Anopheles gambiae were caught by each trap, with a predominance of An. coluzzii. Synthetic baits could, therefore, represent a more standardized and easier-to-deploy approach than using real human odor baits for a robust vector monitoring strategy.


Subject(s)
Anopheles , Mosquito Control , Mosquito Vectors , Odorants , Animals , Anopheles/physiology , Burkina Faso , Mosquito Vectors/physiology , Mosquito Control/methods , Female , Humans , Benin , Malaria/transmission , Malaria/prevention & control , Carbon Dioxide
4.
Malar J ; 22(1): 385, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129880

ABSTRACT

The primary reason for the failure of malaria vector control across endemic regions is the widespread insecticide resistance observed in Anopheles vectors. The most dominant African vectors of malaria parasites are Anopheles gambiae and Anopheles funestus mosquitoes. These species often exhibit divergent behaviours and adaptive changes underscoring the importance of deploying active and effective measures in their control. Unlike An. gambiae, An. funestus mosquitoes are poorly studied in Benin Republic. However, recent reports indicated that An. funestus can adapt and colonize various ecological niches owing to its resistance against insecticides and adaptation to changing breeding habitats. Unfortunately, scientific investigations on the contribution of An. funestus to malaria transmission, their susceptibility to insecticide and resistance mechanism developed are currently insufficient for the design of better control strategies. In an attempt to gather valuable information on An. funestus, the present review examines the progress made on this malaria vector species in Benin Republic and highlights future research perspectives on insecticide resistance profiles and related mechanisms, as well as new potential control strategies against An. funestus. Literature analysis revealed that An. funestus is distributed all over the country, although present in low density compared to other dominant malaria vectors. Interestingly, An. funestus is being found in abundance during the dry seasons, suggesting an adaptation to desiccation. Among the An. funestus group, only An. funestus sensu stricto (s.s.) and Anopheles leesoni were found in the country with An. funestus s.s. being the most abundant species. Furthermore, An. funestus s.s. is the only one species in the group contributing to malaria transmission and have adapted biting times that allow them to bite at dawn. In addition, across the country, An. funestus were found resistant to pyrethroid insecticides used for bed nets impregnation and also resistant to bendiocarb which is currently being introduced in indoor residual spraying formulation in malaria endemic regions. All these findings highlight the challenges faced in controlling this malaria vector. Therefore, advancing the knowledge of vectorial competence of An. funestus, understanding the dynamics of insecticide resistance in this malaria vector, and exploring alternative vector control measures, are critical for sustainable malaria control efforts in Benin Republic.


Subject(s)
Anopheles , Insecticides , Malaria , Animals , Insecticide Resistance , Insecticides/pharmacology , Malaria/epidemiology , Benin , Mosquito Vectors , Mosquito Control
5.
Pathogens ; 12(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36986377

ABSTRACT

Plasmodium falciparum parasites carrying deletions of histidine-rich protein 2 and 3 genes, pfhrp2 and pfhrp3, respectively, are likely to escape detection via HRP2-based rapid diagnostic tests (RDTs) and, consequently, treatment, posing a major risk to both the health of the infected individual and malaria control efforts. This study assessed the frequency of pfhrp2- and pfhrp3-deleted strains at four different study sites in Central Africa (number of samples analyzed: Gabon N = 534 and the Republic of Congo N = 917) and West Africa (number of samples analyzed: Nigeria N = 466 and Benin N = 120) using a highly sensitive multiplex qPCR. We found low prevalences for pfhrp2 (1%, 0%, 0.03% and 0) and pfhrp3 single deletions (0%, 0%, 0.03% and 0%) at all study sites (Gabon, the Republic of Congo, Nigeria and Benin, respectively). Double-deleted P. falciparum were only found in Nigeria in 1.6% of all internally controlled samples. The results of this pilot investigation do not point towards a high risk for false-negative RDT results due to pfhrp2/pfhrp3 deletions in Central and West African regions. However, as this scenario can change rapidly, continuous monitoring is essential to ensure that RDTs remain a suitable tool for the malaria diagnostic strategy.

6.
Front Microbiol ; 13: 891573, 2022.
Article in English | MEDLINE | ID: mdl-35668761

ABSTRACT

Malaria remains a vector-borne infectious disease that is still a major public health concern worldwide, especially in tropical regions. Malaria is caused by a protozoan parasite of the genus Plasmodium and transmitted through the bite of infected female Anopheles mosquitoes. The control interventions targeting mosquito vectors have achieved significant success during the last two decades and rely mainly on the use of chemical insecticides through the insecticide-treated nets (ITNs) and indoor residual spraying (IRS). Unfortunately, resistance to conventional insecticides currently being used in public health is spreading in the natural mosquito populations, hampering the long-term success of the current vector control strategies. Thus, to achieve the goal of malaria elimination, it appears necessary to improve vector control approaches through the development of novel environment-friendly tools. Mosquito microbiota has by now given rise to the expansion of innovative control tools, such as the use of endosymbionts to target insect vectors, known as "symbiotic control." In this review, we will present the viral, fungal and bacterial diversity of Anopheles mosquitoes, including the bacteriophages. This review discusses the likely interactions between the vector microbiota and its fitness and resistance to insecticides.

7.
Parasit Vectors ; 15(1): 209, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35706053

ABSTRACT

BACKGROUND: Although Plasmodium falciparum infection is largely documented and this parasite is the main target for malaria eradication, other Plasmodium species persist, and these require more attention in Africa. Information on the epidemiological situation of non-P. falciparum species infections is scarce in many countries, including in the Democratic Republic of the Congo (hereafter Republic of the Congo) where malaria is highly endemic. The aim of this study was to determine the prevalence and distribution of non-P. falciparum species infections in the region south of Brazzaville. METHODS: A cross-sectional survey was conducted in volunteers living in rural and urban settings during the dry and rainy seasons in 2021. Socio-demographic and clinical parameters were recorded. Plasmodium infection in blood samples was detected by microscopic analysis and nested PCR (sub-microscopic analysis). RESULTS: Of the 773 participants enrolled in the study, 93.7% were from the rural area, of whom 97% were afebrile. The prevalence of microscopic and sub-microscopic Plasmodium spp. infection was 31.2% and 63.7%, respectively. Microscopic Plasmodium malariae infection was found in 1.3% of participants, while sub-microscopic studies detected a prevalence of 14.9% for P. malariae and 5.3% for Plasmodium ovale. The rate of co-infection of P. malariae or P. ovale with P. falciparum was 8.3% and 2.6%, respectively. Higher rates of sub-microscopic infection were reported for the urban area without seasonal fluctuation. In contrast, non-P. falciparum species infection was more pronounced in the rural area, with the associated risk of the prevalence of sub-microscopic P. malariae infection increasing during the dry season. CONCLUSION: There is a need to include non-P. falciparum species in malaria control programs, surveillance measures and eradication strategies in the Republic of the Congo.


Subject(s)
Malaria, Falciparum , Malaria , Congo/epidemiology , Cross-Sectional Studies , Humans , Malaria/epidemiology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum , Prevalence
8.
Parasitol Int ; 89: 102590, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35472441

ABSTRACT

Plasmodium falciparum and Plasmodium malariae infections are prevalent in malaria-endemic countries. However, very little is known about their interactions especially the effect of P. malariae on P. falciparum genetic diversity. This study aimed to assess P. falciparum genetic diversity in P. falciparum and mixed infection P. falciparum/P. malariae isolates among the asymptomatic populations in Southern Benin. Two hundred and fifty blood samples (125 of P. falciparum and 125 P. falciparum/P. malariae isolates) were analysed by a nested PCR amplification of msp1 and msp2 genes. The R033 allelic family was the most represented for the msp1 gene in mono and mixed infection isolates (99.2% vs 86.4%), while the K1 family had the lowest frequency (38.3% vs 20.4%). However, with the msp2 gene, the two allelic families displayed similar frequencies in P. falciparum isolates while the 3D7 allelic family was more represented in P. falciparum/P. malariae isolates (88.7%). Polyclonal infections were also lower (62.9%) in P. falciparum/P. malariae isolates (p < 0.05). Overall, 96 individual alleles were identified (47 for msp1 and 49 for msp2) in P. falciparum isolates while a total of 50 individual alleles were identified (23 for msp1 and 27 for msp2) in P. falciparum/P. malariae isolates. The Multiplicity of Infection (MOI) was lower in P. falciparum/P. malariae isolates (p < 0.05). This study revealed a lower genetic diversity of P. falciparum in P. falciparum/P. malariae isolates using msp1 and msp2 genes among the asymptomatic population in Southern Benin.


Subject(s)
Coinfection , Malaria, Falciparum , Malaria , Alleles , Antigens, Protozoan/genetics , Benin/epidemiology , Coinfection/epidemiology , Frontotemporal Dementia , Genetic Variation , Genotype , Humans , Malaria/genetics , Malaria, Falciparum/epidemiology , Merozoite Surface Protein 1/genetics , Muscular Dystrophies, Limb-Girdle , Myositis, Inclusion Body , Osteitis Deformans , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
9.
Parasitol Res ; 121(1): 275-286, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34981216

ABSTRACT

Among the Plasmodium species that infect humans, P. falciparum has been largely studied in malaria endemic areas. However, P. malariae infection is less documented among the human population. This study aimed to monitor the prevalence and distribution of P. malariae in Southern Benin. A cross-sectional survey was conducted in rural localities in the Ouidah-Kpomasse-Tori Bossito (OKT) health district in Southern Benin from June to October 2019. Socio-demographic data were collected using a questionnaire, while malaria infection data were obtained on the one hand by microscopy diagnosis and, on the other, by nested polymerase chain reaction (PCR). Based on microscopy, the prevalence of P. malariae mono-infection and coinfection of P. falciparum, P. malariae was respectively 2.3% and 1.2% in the OKT health district. This prevalence was higher (P < 0.01) than that reported by Damien et al. (2010) 10 years ago in the same study area with 0.7% and 0.3% of P. malariae and P. falciparum/P. malariae, respectively. Based on PCR analysis, P. malariae prevalence was 14.1%, including 5.2% of mono-infection and 8.9% of mixed infection with P. falciparum. Sub-microscopic Plasmodium infections were high (30.6%) and more pronounced in older participants (>20 years). The present study revealed that P. malariae increased in the OKT health district with a high prevalence of submicroscopic infection. Since our results provide valuable evidence of increasing P. malariae infection, the National Malaria Control Programs (NMCPs) must consider P. malariae when designing future measures for effective control and malaria treatment.


Subject(s)
Malaria , Plasmodium malariae , Aged , Benin , Cross-Sectional Studies , Humans , Plasmodium falciparum , Prevalence
10.
Malar J ; 20(1): 480, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34930272

ABSTRACT

BACKGROUND: Existing mechanisms of insecticide resistance are known to help the survival of mosquitoes following contact with chemical compounds, even though they could negatively affect the life-history traits of resistant malaria vectors. In West Africa, the knockdown resistance mechanism kdrR (L1014F) is the most common. However, little knowledge is available on its effects on mosquito life-history traits. The fitness effects associated with this knockdown resistance allele in Anopheles gambiae sensu stricto (s.s.) were investigated in an insecticide-free laboratory environment. METHODS: The life-history traits of Kisumu (susceptible) and KisKdr (kdr resistant) strains of An. gambiae s.s. were compared. Larval survivorship and pupation rate were assessed as well as fecundity and fertility of adult females. Female mosquitoes of both strains were directly blood fed through artificial membrane assays and then the blood-feeding success, blood volume and adult survivorship post-blood meal were assessed. RESULTS: The An. gambiae mosquitoes carrying the kdrR allele (KisKdr) laid a reduced number of eggs. The mean number of larvae in the susceptible strain Kisumu was three-fold overall higher than that seen in the KisKdr strain with a significant difference in hatching rates (81.89% in Kisumu vs 72.89% in KisKdr). The KisKdr larvae had a significant higher survivorship than that of Kisumu. The blood-feeding success was significantly higher in the resistant mosquitoes (84%) compared to the susceptible ones (34.75%). However, the mean blood volume was 1.36 µL/mg, 1.45 µL/mg and 1.68 µL/mg in Kisumu, homozygote and heterozygote KisKdr mosquitoes, respectively. After blood-feeding, the heterozygote KisKdr mosquitoes displayed highest survivorship when compared to that of Kisumu. CONCLUSIONS: The presence of the knockdown resistance allele appears to impact the life-history traits, such as fecundity, fertility, larval survivorship, and blood-feeding behaviour in An. gambiae. These data could help to guide the implementation of more reliable strategies for the control of malaria vectors.


Subject(s)
Anopheles/physiology , Genetic Pleiotropy , Insecticide Resistance/genetics , Life History Traits , Mosquito Vectors/physiology , Animals , Anopheles/drug effects , Anopheles/genetics , Mosquito Vectors/drug effects , Mosquito Vectors/genetics
11.
Malar J ; 19(1): 456, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33334345

ABSTRACT

BACKGROUND: Understanding the molecular basis of insecticide resistance in mosquito, such as Anopheles funestus, is an important step in developing strategies to mitigate the resistance problem. This study aims to assess the role of the GSTe2 gene in DDT resistance and determine the genetic diversity of this gene in An. funestus. METHODS: Gene expression analysis was performed using microarrays and PCR while the potential mutation associated with resistance was determined using sequencing. RESULTS: Low expression level of GSTe2 gene was recorded in Burkina-Faso samples with a fold change of 3.3 while high expression (FC 35.6) was recorded in southern Benin in Pahou (FC 35.6) and Kpome (FC 13.3). The sequencing of GSTe2 gene in six localities showed that L119F-GSTe2 mutation is almost getting fixed in highly DDT-resistant Benin (Pahou, Kpome, Doukonta) and Nigeria (Akaka Remo) mosquitoes with a low mutation rate observed in Tanongou (Benin) and Burkina-Faso mosquitoes. CONCLUSION: This study shows the key role of the GSTe2 gene in DDT resistant An. funestus in Benin. Polymorphism analysis of this gene across Benin revealed possible barriers to gene flow, which could impact the design and implementation of resistance management strategies in the country.


Subject(s)
Anopheles/genetics , DDT/pharmacology , Glutathione Transferase/genetics , Insect Proteins/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Animals , Anopheles/drug effects , Benin , Female , Geography , Glutathione Transferase/metabolism , Insect Proteins/metabolism
12.
Wellcome Open Res ; 5: 146, 2020.
Article in English | MEDLINE | ID: mdl-33204845

ABSTRACT

Background: Reducing the burden of malaria requires better understanding of vector populations, particularly in forested regions where the incidence remains elevated. Here, we characterized malaria vectors in a locality near the Yaoundé international airport, Cameroon, including species composition, abundance, Plasmodium infection rate, insecticide resistance profiles and underlying resistance mechanisms. Methods: Blood-fed adult mosquitoes resting indoors were aspirated from houses in April 2019 at Elende, a village located 2 km from the Yaoundé-Nsimalen airport. Female mosquitoes were forced to lay eggs to generate F 1 adult progeny. Bioassays were performed to assess resistance profile to insecticides. The threshold of insecticide susceptibility was defined above 98% mortality rate and mortality rates below 90% were indicative of confirmed insecticide resistance. Furthermore, the molecular basis of resistance and Plasmodium infection rates were investigated. Results: Anopheles funestus s.s. was most abundant species in Elende (85%) followed by Anopheles gambiae s.s. (15%) with both having a similar sporozoite rate. Both species exhibited high levels of resistance to pyrethroids (<40% mortality). An. gambiae s.s. was also resistant to DDT (9.9% mortality) and bendiocarb (54% mortality) while susceptible to organophosphate. An. funestus s.s. was resistant to dieldrin (1% mortality), DDT (86% mortality) but susceptible to carbamates and organophosphates. The L119F-GSTe2 resistance allele (8%) and G119S ace-1 resistance allele (15%) were detected in An. funestus s.s. and An. gambiae s.s., respectively . Furthermore, the high pyrethroid/DDT resistances in An. gambiae s.s. corresponded with an increase frequency of 1014F kdr allele (95%). Transcriptional profiling of candidate cytochrome P450 genes reveals the over-expression of CYP6P5, CYP6P9a and CYP6P9b. Conclusion: The resistance to multiple insecticide classes observed in these vector populations alongside the high Plasmodium sporozoite rate highlights the challenges that vector control programs encounter in sustaining the regular benefits of contemporary insecticide-based control interventions in forested areas.

13.
Parasit Vectors ; 13(1): 423, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32811561

ABSTRACT

BACKGROUND: Understanding the mechanisms used by Anopheles mosquitoes to survive insecticide exposure is key to manage existing insecticide resistance and develop more suitable insecticide-based malaria vector control interventions as well as other alternative integrated tools. To this regard, the molecular basis of permethrin, DDT and dieldrin resistance in Anopheles funestus (sensu stricto) at Akaka-Remo was investigated. METHODS: Bioassays were conducted on 3-5-day-old adult An. funestus (s.s.) mosquitoes for permethrin, DDT and dieldrin susceptibility test. The molecular mechanisms of mosquito resistance to these insecticides were investigated using microarray and reverse transcriptase PCR techniques. The voltage-gated sodium channel region of mosquitoes was also screened for the presence of knockdown resistance mutations (kdr west and east) by sequencing method. RESULTS: Anopheles funestus (s.s.) population was resistant to permethrin (mortality rate of 68%), DDT (mortality rate of 10%) and dieldrin (mortality rate of 8%) insecticides. Microarray and RT-PCR analyses revealed the overexpression of glutathione S-transferase genes, cytochrome P450s, esterase, trypsin and cuticle proteins in resistant mosquitoes compared to control. The GSTe2 was the most upregulated detoxification gene in permethrin-resistant (FC = 44.89), DDT-resistant (FC = 57.39) and dieldrin-resistant (FC = 41.10) mosquitoes compared to control population (FC = 22.34). The cytochrome P450 gene, CYP6P9b was also upregulated in both permethrin- and DDT-resistant mosquitoes. The digestive enzyme, trypsin (hydrolytic processes) and the cuticle proteins (inducing cuticle thickening leading to reduced insecticides penetration) also showed high involvement in insecticide resistance, through their overexpression in resistant mosquitoes compared to control. The kdr east and west were absent in all mosquitoes analysed, suggesting their non-involvement in the observed mosquito resistance. CONCLUSIONS: The upregulation of metabolic genes, especially the GSTe2 and trypsin, as well as the cuticle proteins is driving insecticide resistance of An. funestus (s.s.) population. However, additional molecular analyses, including functional metabolic assays of these genes as well as screening for a possible higher cuticular hydrocarbon and lipid contents, and increased procuticle thickness in resistant mosquitoes are needed to further describe their distinct roles in mosquito resistance.


Subject(s)
Anopheles , Insecticide Resistance/genetics , Insecticides/pharmacology , Animals , Anopheles/drug effects , Anopheles/genetics , Anopheles/metabolism , Biological Assay , Cytochrome P-450 Enzyme System/metabolism , DDT/pharmacology , Dieldrin/pharmacology , Disease Vectors , Esterases/metabolism , Gene Expression Regulation , Genes, Insect , Glutathione Transferase/metabolism , Insect Proteins/metabolism , Malaria/transmission , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Mosquito Vectors/metabolism , Nigeria , Oligonucleotide Array Sequence Analysis , Permethrin/pharmacology , Trypsin/genetics , Voltage-Gated Sodium Channels/genetics , Voltage-Gated Sodium Channels/metabolism
14.
Sci Rep ; 10(1): 6392, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286370

ABSTRACT

The use of agrochemicals in vegetable production could influence the selection for insecticide resistance in malaria vectors. Unfortunately, there is a dearth of information on the potential contribution of agrochemicals to insecticide resistance in Anopheles mosquitoes breeding on vegetable farms in southern Benin. A Knowledge, Attitudes and Practices study was conducted with 75 vegetable farmers from Houeyiho and Seme to determine the main agrochemicals used in vegetable production, and the concentration and frequency of application, among other details. Mosquitoes and breeding water were sampled from the farms for analysis. Bioassays were conducted on mosquitoes, while breeding water was screened for heavy metal and pesticide residue contamination. Lambda-cyhalothrin was the main insecticide (97.5%) used by farmers, and Anopheles coluzzii was the main mosquito identified. This mosquito species was resistant (30-63% mortality rate) to λ-cyhalothrin. It was also observed that 16.7% of the examined breeding sites were contaminated with λ-cyhalothrin residues. Furthermore, copper contamination detected in mosquito breeding sites showed a positive correlation (r = 0.81; P = 0.0017) with mosquito resistance to λ-cyhalothrin. The presence of copper in λ-cyhalothrin-free breeding sites, where mosquitoes have developed resistance to λ-cyhalothrin, suggests the involvement of copper in the insecticide resistance of malaria vectors; this, however, needs further investigation.


Subject(s)
Anopheles/physiology , Copper/pharmacology , Farms , Insecticide Resistance/drug effects , Vegetables , Animals , Anopheles/drug effects , Benin , Breeding , Geography , Insecticides/toxicity , Larva/drug effects , Nitriles/toxicity , Pyrethrins/toxicity
15.
Article in English | MEDLINE | ID: mdl-31142024

ABSTRACT

Helicoverpa armigera is an indigenous species in Africa and has been reported in the destruction of several crops in Benin. Management of H. armigera pest is mainly focused on the use of synthetic pyrethroids, which may contribute to resistance selection. This study aimed to screen the susceptibility pattern of field populations of H. armigera to deltamethrin in Benin. Relevant information on the type of pesticides used by farmers were gathered through surveys. Collected samples of Helicoverpa (F0) were reared to F1. F0 were subjected to morphological speciation followed by a confirmation using restriction fragment length polymorphism coupled with a polymerase chain reaction (RFLP-PCR). F1 (larvae) were used for insecticide susceptibility with deltamethrin alone and in the presence of the P450 inhibitor Piperonyl Butoxide (PBO). Deltamethrin and lambda-cyhalothrin were the most used pyrethroids in tomato and cotton farms respectively. All field-sampled Helicoverpa were found to be H. armigera. Susceptibility assays of H. armigera to deltamethrin revealed a high resistance pattern in cowpea (resistance factor (RF) = 2340), cotton (RF varying from 12 to 516) and tomato (RF=85) farms which is a concern for the control of this major polyphagous agricultural pest. There was a significant increase of mortality when deltamethrin insecticide was combined with piperonyl butoxide (PBO), suggesting the possible involvement of detoxification enzymes such as oxidase. This study highlights the presence of P450 induced metabolic resistance in H. armigera populations from diverse cropping systems in Benin. The recorded high levels of deltamethrin resistance in H. armigera is a concern for the control of this major agricultural pest in Benin as the country is currently embarking into economical expansion of cotton, vegetables and grain-legumes cropping systems.


Subject(s)
Animal Distribution , Insecticide Resistance , Insecticides/pharmacology , Moths/drug effects , Nitriles/pharmacology , Pyrethrins/pharmacology , Animals , Benin , Larva/drug effects
16.
Parasit Vectors ; 11(1): 602, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30458849

ABSTRACT

BACKGROUND: Insecticide resistance in Anopheles mosquitoes is threatening the success of malaria control programmes. In order to implement suitable insecticide resistance management strategies, it is necessary to understand the underlying mechanisms involved. To achieve this, the molecular basis of permethrin and DDT resistance in the principal malaria vector, Anopheles funestus from inland Benin (Kpome), was investigated. RESULTS: Here, using a microarray-based genome-wide transcription and qRT-PCR analysis, we showed that metabolic resistance mechanisms through over-expression of cytochrome P450 and glutathione S-transferase genes (GSTs) are a major contributor to DDT and permethrin resistance in Anopheles funestus from Kpome. The GSTe2 gene was the most upregulated detoxification gene in both DDT- [fold-change (FC: 16.0)] and permethrin-resistant (FC: 18.1) mosquitoes suggesting that upregulation of this gene could contribute to DDT resistance and cross-resistance to permethrin. CYP6P9a and CYP6P9b genes that have been previously associated with pyrethroid resistance were also significantly overexpressed with FC 5.4 and 4.8, respectively, in a permethrin resistant population. Noticeably, the GSTs, GSTd1-5 and GSTd3, were more upregulated in DDT-resistant than in permethrin-resistant Anopheles funestus suggesting these genes are more implicated in DDT resistance. The absence of the L1014F or L1014S kdr mutations in the voltage-gated sodium channel gene coupled with the lack of directional selection at the gene further supported that knockdown resistance plays little role in this resistance. CONCLUSIONS: The major role played by metabolic resistance to pyrethroids in this An. funestus population in Benin suggests that using novel control tools combining the P450 synergist piperonyl butoxide (PBO), such as PBO-based bednets, could help manage the growing pyrethroid resistance in this malaria vector in Benin.


Subject(s)
Anopheles/genetics , DDT/pharmacology , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/drug effects , Permethrin/pharmacology , Animals , Anopheles/drug effects , Anopheles/parasitology , Benin/epidemiology , Cytochrome P-450 Enzyme System/drug effects , Cytochrome P-450 Enzyme System/genetics , Glutathione Transferase/drug effects , Glutathione Transferase/genetics , Insect Proteins/drug effects , Insect Proteins/genetics , Malaria/epidemiology , Malaria/parasitology , Malaria/prevention & control , Malaria/transmission , Mosquito Vectors/genetics , Mosquito Vectors/parasitology , Mutation , Transcriptome , Up-Regulation
17.
Wellcome Open Res ; 3: 71, 2018.
Article in English | MEDLINE | ID: mdl-30175242

ABSTRACT

Background: Insecticides resistance in Anopheles mosquitoes limits Long-Lasting Insecticidal Nets (LLIN) used for malaria control in Africa, especially Benin. This study aimed to evaluate the bio-efficacy of current LLINs in an area where An. funestuss.l. and An. gambiae have developed multi-resistance to insecticides, and to assess in experimental huts the performance of a mixed combination of pyrethroids and piperonyl butoxide (PBO) treated nets on these resistant mosquitoes. Methods: The study was conducted at Kpomè, Southern Benin. The bio-efficacy of LLINs against An. funestus and An. gambiae was assessed using the World Health Organization (WHO) cone and tunnel tests. A released/recapture experiment following WHO procedures was conducted to compare the efficacy of conventional LLINs treated with pyrethroids only and LLINs with combinations of pyrethroids and PBO. Prior to huts trials, we confirmed the level of insecticide and PBO residues in tested nets using high performance liquid chromatography (HPLC). Results: Conventional LLINs (Type 2 and Type 4) have the lowest effect against local multi-resistant An. funestus s.s. and An. coluzzii populations from Kpomè. Conversely, when LLINs containing mixtures of pyrethroids and PBO (Type 1 and Type 3) were introduced in trial huts, we recorded a greater effect against the two mosquito populations (P < 0.0001). Tunnel test with An. funestus s.s. revealed mortalities of over 80% with this new generation of LLINs (Type 1 and Type 3),while conventional LLINs produced 65.53 ± 8.33% mortalities for Type 2 and 71.25 ±7.92% mortalities for Type 4. Similarly, mortalities ranging from 77 to 87% were recorded with the local populations of An. coluzzii. Conclusion: This study suggests the reduced efficacy of conventional LLINs (Pyrethroids alone) currently distributed in Benin communities where Anopheles populations have developed multi-insecticide resistance. The new generation nets (pyrethroids+PBO) proved to be more effective on multi-resistant populations of mosquitoes.

18.
PLoS Negl Trop Dis ; 12(7): e0006572, 2018 07.
Article in English | MEDLINE | ID: mdl-29965961

ABSTRACT

BACKGROUND: The environmental pathogen, Mycobacterium ulcerans (MU) can infect both humans and animals and cause Buruli ulcer (BU) disease. However, its mode(s) of transmission from the colonized environment to human/animal hosts remain unclear. In Australia, MU can infect both wildlife and domestic mammals. Till date, BU-like lesions have only been reported in wildlife in Africa. This warrants a thorough assessment of possible MU in domestic animals in Africa. Here, we screened roaming domesticated animals that share the human microhabitat in two different BU endemic sites, Sedje-Denou in Benin and Akonolinga in Cameroon, for MU lesions. METHODOLOGY/PRINCIPAL FINDINGS: We screened roaming mammals and birds across 3 endemic villages of Sedje-Denou in Southern Benin and 6 endemic villages of Akonolinga in Cameroon. After approval from relevant authorities, specimens (wound swabs and tissue fragments) were collected from animals with open or active lesion and systematically screened to detect the presence of MU though the diagnostic DNA targets IS2404, IS2606 and KR-B. Out of 397 animals surveyed in Akonolinga, 44 (11.08%) carried skin lesions and all were negative for MU DNA. For Sedje-Denou, only 25 (6.93%) out of 361 animals surveyed carried external skin lesions of which 2 (8%) were positive for MU DNA targets. These MU infected lesions were found in two different villages on a goat (abdominal part) and on a dog (nape area of the neck). Source-tracking of MU isolates within infected animal lesions was performed using VNTR genotyping and further confirmed with sequencing. One MU VNTR genotype (Z) was successfully typed from the goat lesion. The evolutionary history inferred from sequenced data revealed a clustering of animal MU isolates within isolates from human lesions. CONCLUSION/SIGNIFICANCE: This study describes the first report of two MU infected lesions in domestic animals in Africa. Their DNA sequence analyses show close relationship to isolates from human cases. It suggests that MU infection should be suspected in domestic hosts and these could play a role in transmission. The findings further support the hypothesis that MU is a ubiquitous environmental pathogen found in endemic areas, and probably involved in a multiple transmission pathway.


Subject(s)
Animals, Domestic/microbiology , Buruli Ulcer/transmission , Buruli Ulcer/veterinary , Mycobacterium ulcerans/isolation & purification , Zoonoses/transmission , Animals , Benin , Buruli Ulcer/microbiology , Cameroon , Chickens , Dog Diseases/microbiology , Dogs , Ducks , Female , Genotype , Goat Diseases/microbiology , Goats , Humans , Male , Mycobacterium ulcerans/classification , Mycobacterium ulcerans/genetics , Mycobacterium ulcerans/physiology , Phylogeny , Poultry Diseases/microbiology , Sheep , Sheep Diseases/microbiology , Zoonoses/microbiology
19.
Wellcome Open Res ; 3: 30, 2018.
Article in English | MEDLINE | ID: mdl-29707654

ABSTRACT

Background: To optimize the success of insecticide-based malaria control intervention, knowledge of the distribution of Anopheles gambiae species and insecticide resistance mechanisms is necessary. This paper reported an updated data on pyrethroids/DDT resistance in the An. gambiae s.l population from Togo.  Methods: From December 2013 to April 2015, females of indoor-resting An. gambiae s.l were captured in three locations belonging to three different ecological zones. Resistance to DDT, permethrin and deltamethrin was screened in F1 progeny of collected mosquitoes using WHO susceptibility tests. The identification of species of An. gambiae complex and the detection of kdr and ace.1 R allele were carried out using DNA-based molecular techniques. Results:An. gambiae from Kovié and Nangbéto were highly resistant to DDT and permethrin with mortalities rate ranging from 0.83% to 1.58% for DDT and zero to 8.54% for permethrin. Mosquitoes collected in Nangbéto displayed 81.53% mortality with deltamethrin. An. coluzzii and An. gambiae s.s were found in sympatry in Nangbéto and Mango . The allelic frequency of L1014F was high, ranging from 66 to 100% in both An. coluzzii and An. gambiae s.s. For the first time we detected the L1014S allele in both An. coluzzii and An. gambiaes.s. from Togo at the frequency ranging from 5% to 13% in all the sites. The kdr N1575Y was present at various frequencies in both species ranging from 10% to 45%. Both An. gambiae s.s. and An. coluzzii shared the ace1 R mutation in all investigated sites with allelic frequency ranging from 4% to 16%. Conclusion: These results showed that multiple mutations are involved in insecticides resistance in An. gambiae populations from Togo including the kdr L1014F, L1014S, and N1575Y and ace.1 R G119S mutations.

20.
Can J Infect Dis Med Microbiol ; 2017: 1324310, 2017.
Article in English | MEDLINE | ID: mdl-28932250

ABSTRACT

BACKGROUND: Buruli ulcer (BU) continues to be a serious public health threat in wet tropical regions and the mode of transmission of its etiological agent, Mycobacterium ulcerans (MU), remains poorly understood. In this study, mosquito species collected in endemic villages in Benin were screened for the presence of MU. In addition, the ability of mosquitoes larvae to pick up MU from their environment and remain colonized through the larval developmental stages to the adult stage was investigated. METHODS: 7,218 adults and larvae mosquitoes were sampled from endemic and nonendemic villages and screened for MU DNA targets (IS2404, IS2606, and KR-B) using qPCR. Results. MU was not detected in any of the field collected samples. Additional studies of artificially infected larvae of Anopheles kisumu with MU strains revealed that mosquitoes larvae are able to ingest and host MU during L1, L2, L3, and L4 developmental stages. However, we noticed an absence of these bacteria at both pupae and adult stages, certainly revealing the low ability of infected or colonized mosquitoes to vertically transmit MU to their offspring. CONCLUSION: The overall findings highlight the low implication of mosquitoes as biological vectors in the transmission cycle of MU from the risk environments to humans.

SELECTION OF CITATIONS
SEARCH DETAIL
...