Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 43(9): 1572-1589, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36717227

ABSTRACT

Despite the tight coupling between sensory and motor processing for fine manipulation in humans, it is not yet totally clear which specific properties of the fingers are mapped in the precentral and postcentral gyrus. We used fMRI to compare the morphology, connectivity, and encoding of the motor and tactile finger representations (FRs) in the precentral and postcentral gyrus of 25 5-fingered participants (8 females). Multivoxel pattern and structural and functional connectivity analyses demonstrated the existence of distinct motor and tactile FRs within both the precentral and postcentral gyrus, integrating finger-specific motor and tactile information. Using representational similarity analysis, we found that the motor and tactile FRs in the sensorimotor cortex were described by the perceived structure of the hand better than by the actual hand anatomy or other functional models (finger kinematics, muscles synergies). We then studied a polydactyly individual (i.e., with a congenital 6-fingered hand) showing superior manipulation abilities and divergent anatomic-functional hand properties. The perceived hand model was still the best model for tactile representations in the precentral and postcentral gyrus, while finger kinematics better described motor representations in the precentral gyrus. We suggest that, under normal conditions (i.e., in subjects with a standard hand anatomy), the sensorimotor representations of the 5 fingers in humans converge toward a model of perceived hand anatomy, deviating from the real hand structure, as the best synthesis between functional and structural features of the hand.SIGNIFICANCE STATEMENT Distinct motor and tactile finger representations exist in both the precentral and postcentral gyrus, supported by a finger-specific pattern of anatomic and functional connectivity across modalities. At the representational level, finger representations reflect the perceived structure of the hand, which might result from an adapting process harmonizing (i.e., uniformizing) the encoding of hand function and structure in the precentral and postcentral gyrus. The same analyses performed in an extremely rare polydactyly subject showed that the emergence of such representational geometry is also found in neuromechanical variants with different hand anatomy and function. However, the harmonization process across the precentral and postcentral gyrus might not be possible because of divergent functional-structural properties of the hand and associated superior manipulation abilities.


Subject(s)
Polydactyly , Somatosensory Cortex , Female , Humans , Somatosensory Cortex/physiology , Fingers/physiology , Touch/physiology , Hand , Magnetic Resonance Imaging , Brain Mapping
2.
Schizophr Res Cogn ; 28: 100227, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34976748

ABSTRACT

Visual deficits are core deficits of schizophrenia. Classically, deficits are determined with demanding psychophysical tasks requiring fine-grained spatial or temporal resolution. Less is known about holistic processing. Here, we employed the Leuven Embedded Figures Test (L-EFT) measuring classic aspects of Gestalt processing. A target shape is embedded in a context and observers have to detect as quickly as possible in which display the target is embedded. Targets vary in closure, symmetry, complexity, and good continuation. In all conditions, schizophrenia patients had longer RTs compared to controls and depressive patients and to a lesser extent compared to their siblings. There was no interaction suggesting that, once the main deficit of schizophrenia patients is discarded, there are no further deficits in Gestalt perception between the groups. This result is in line with a growing line of research showing that when schizophrenia patients are given sufficient time to accomplish the task, they perform as well as controls.

3.
Sci Rep ; 11(1): 18069, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34508126

ABSTRACT

When performing willed actions, we have the unified and coherent experience of owning and controlling our body. Body ownership is believed to emerge from the integration of coherent multisensory signals, while agency is believed to emerge from the coherence between predicted and perceived outcomes of actions. As a consequence, body ownership and agency can both be modulated by multisensory conflicts. The contribution of active movement generation to ownership and agency has not been parametrically explored. Here, we investigated the contribution of interaction force between the agent and the environment to the sense of hand ownership (SO) and the sense of hand agency (SA). By combining robotics and virtual reality, we manipulated the sensorimotor and visual information during immersive scenarios to induce and quantify altered states of SO and SA. First, we demonstrated that SO and SA could be successfully manipulated by our experimental paradigms. Second, we showed that interaction force strongly contributes to SA, but to a lesser extent to SO. Finally, we showed that SO and SA interact beyond their common multisensory basis. Our results, based on two independent studies, provide a direct link between sensorimotor interactions and subjective body experience and demonstrate a new dissociation between SO and SA.

4.
Sci Transl Med ; 13(591)2021 04 28.
Article in English | MEDLINE | ID: mdl-33910980

ABSTRACT

Hallucinations in Parkinson's disease (PD) are disturbing and frequent non-motor symptoms and constitute a major risk factor for psychosis and dementia. We report a robotics-based approach applying conflicting sensorimotor stimulation, enabling the induction of presence hallucinations (PHs) and the characterization of a subgroup of patients with PD with enhanced sensitivity for conflicting sensorimotor stimulation and robot-induced PH. We next identify the fronto-temporal network of PH by combining MR-compatible robotics (and sensorimotor stimulation in healthy participants) and lesion network mapping (neurological patients without PD). This PH-network was selectively disrupted in an additional and independent cohort of patients with PD, predicted the presence of symptomatic PH, and associated with cognitive decline. These robotics-neuroimaging findings extend existing sensorimotor hallucination models to PD and reveal the pathological cortical sensorimotor processes of PH in PD, potentially indicating a more severe form of PD that has been associated with psychosis and cognitive decline.


Subject(s)
Parkinson Disease , Psychotic Disorders , Robotics , Hallucinations , Humans , Neuroimaging
5.
Hum Brain Mapp ; 42(7): 2262-2277, 2021 05.
Article in English | MEDLINE | ID: mdl-33621380

ABSTRACT

Many studies focused on the cortical representations of fingers, while the palm is relatively neglected despite its importance for hand function. Here, we investigated palm representation (PR) and its relationship with finger representations (FRs) in primary somatosensory cortex (S1). Few studies in humans suggested that PR is located medially with respect to FRs in S1, yet to date, no study directly quantified the somatotopic organization of PR and the five FRs. Importantly, the link between the somatotopic organization of PR and FRs and their activation properties remains largely unexplored. Using 7T fMRI, we mapped PR and the five FRs at the single subject level. First, we analyzed the cortical distance between PR and FRs to determine their somatotopic organization. Results show that PR was located medially with respect to D5. Second, we tested whether the observed cortical distances would predict the relationship between PR and FRs activations. Using three complementary measures (cross-activations, pattern similarity and resting-state connectivity), we show that the relationship between PR and FRs activations were not determined by their somatotopic organization, that is, there was no gradient moving from D5 to D1, except for resting-state connectivity, which was predicted by the somatotopy. Instead, we show that the representational geometry of PR and FRs activations reflected the physical structure of the hand. Collectively, our findings suggest that the spatial proximity between topographically organized neuronal populations do not necessarily predicts their functional properties, rather the structure of the sensory space (e.g., the hand shape) better describes the observed results.


Subject(s)
Brain Mapping , Fingers/physiology , Metacarpus/physiology , Somatosensory Cortex/physiology , Adolescent , Female , Humans , Magnetic Resonance Imaging , Male , Somatosensory Cortex/diagnostic imaging , Young Adult
6.
Brain ; 140(11): 2993-3011, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29088353

ABSTRACT

Neuroprosthetics research in amputee patients aims at developing new prostheses that move and feel like real limbs. Targeted muscle and sensory reinnervation (TMSR) is such an approach and consists of rerouting motor and sensory nerves from the residual limb towards intact muscles and skin regions. Movement of the myoelectric prosthesis is enabled via decoded electromyography activity from reinnervated muscles and touch sensation on the missing limb is enabled by stimulation of the reinnervated skin areas. Here we ask whether and how motor control and redirected somatosensory stimulation provided via TMSR affected the maps of the upper limb in primary motor (M1) and primary somatosensory (S1) cortex, as well as their functional connections. To this aim, we tested three TMSR patients and investigated the extent, strength, and topographical organization of the missing limb and several control body regions in M1 and S1 at ultra high-field (7 T) functional magnetic resonance imaging. Additionally, we analysed the functional connectivity between M1 and S1 and of both these regions with fronto-parietal regions, known to be important for multisensory upper limb processing. These data were compared with those of control amputee patients (n = 6) and healthy controls (n = 12). We found that M1 maps of the amputated limb in TMSR patients were similar in terms of extent, strength, and topography to healthy controls and different from non-TMSR patients. S1 maps of TMSR patients were also more similar to normal conditions in terms of topographical organization and extent, as compared to non-targeted muscle and sensory reinnervation patients, but weaker in activation strength compared to healthy controls. Functional connectivity in TMSR patients between upper limb maps in M1 and S1 was comparable with healthy controls, while being reduced in non-TMSR patients. However, connectivity was reduced between S1 and fronto-parietal regions, in both the TMSR and non-TMSR patients with respect to healthy controls. This was associated with the absence of a well-established multisensory effect (visual enhancement of touch) in TMSR patients. Collectively, these results show how M1 and S1 process signals related to movement and touch are enabled by targeted muscle and sensory reinnervation. Moreover, they suggest that TMSR may counteract maladaptive cortical plasticity typically found after limb loss, in M1, partially in S1, and in their mutual connectivity. The lack of multisensory interaction in the present data suggests that further engineering advances are necessary (e.g. the integration of somatosensory feedback into current prostheses) to enable prostheses that move and feel as real limbs.


Subject(s)
Amputation, Surgical , Motor Cortex/diagnostic imaging , Movement/physiology , Muscle, Skeletal/innervation , Skin/innervation , Somatosensory Cortex/diagnostic imaging , Touch/physiology , Upper Extremity , Adult , Aged , Artificial Limbs , Brain Mapping , Electromyography , Female , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Motor Cortex/physiology , Neuronal Plasticity , Somatosensory Cortex/physiology
7.
Neuroimage ; 159: 473-487, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28629975

ABSTRACT

Primary somatosensory cortex (S1) processes somatosensory information and is composed of multiple subregions. In particular, tactile information from the skin is encoded in three subregions, namely Brodmann areas (BAs) 3b, 1 and 2, with each area representing a complete map of the contralateral body. Although, much is known about the somatotopic organization of the hand in human S1, less research has been carried out regarding the somatotopic maps of the foot and leg in S1. Moreover, a latero-medial S1 organization along the superior part of the postcentral gyrus has been reported when moving from hip to toes, yet to date there is no study investigating leg/foot maps within the different subregions of S1. Using ultra-high field MRI (7T), we mapped six cortical representations of the lower limb (hip to toes) at the single subject level and performed this analysis separately for BAs 3b, 1 and 2. Analyzing the BOLD responses associated with tactile stimulations of the mapped foot and leg regions on each side, we quantified the extent and the strength of activation to determine somatotopic organization. In addition, we investigated whether each mapped representation also responded to the stimulation of other body parts (i.e. response selectivity) and conducted dissimilarity analysis relating these anatomical and functional properties of S1 to the physical structure of the lower limbs. Our data reveal somatotopy for the leg, but not for the foot in all investigated BAs, with large inter-subject variability. We found only minor differences between the properties of the three investigated BAs, suggesting that S1 maps for the lower limbs differ from those described for the hand. We also describe greater extent/strength of S1 activation for the big toe representation (compared to the other mapped representations) within all BAs, suggesting a possible homology between the first digit of upper and lower extremity in humans, and report different patterns of selectivity in the foot representations (i.e. lower selectivity) compared to the other leg representations (i.e. greater selectivity). These data provide a detailed description of human S1 subregions for the foot and leg, highlight the importance of high-resolution mapping studies and of single subject analysis, and indicate potential differences between the lower and the upper limb.


Subject(s)
Brain Mapping/methods , Magnetic Resonance Imaging/methods , Somatosensory Cortex/anatomy & histology , Somatosensory Cortex/physiology , Adolescent , Adult , Female , Foot/innervation , Humans , Leg/innervation , Male , Young Adult
8.
Front Psychiatry ; 8: 4, 2017.
Article in English | MEDLINE | ID: mdl-28203208

ABSTRACT

BACKGROUND: The present study investigates the possibilities of using heart rate variability (HRV) parameters as physiological markers that precede increase in observed behavioral excitation of intellectually disabled individuals. The ability to recognize or predict such patterns, especially in patients showing unpredictable reactions and language deficiencies, might be a major step forward in clinical research. METHOD: Thirteen volunteers with intellectual disabilities, who had suffered of at least one event of overt aggression in the preceding 3 months, participated to the study. The protocol consists in the acquisition of continuous electrocardiogram (ECG) throughout approximately two times of 8 h in natural situation, using a T-shirt integrated with sensors. Simultaneously, an observer evaluates the patient's level of overt excitation from calm (level 1) to extremely tense (level 5) and send online via Bluetooth these triggers into the ECG signals. The HRV indexes were then estimated offline on the basis of the inter-beat intervals recorded by the ECG, independently for the 30 min preceding each behavioral tension marking point, averaged, and compared through non-parametric Wilcoxon matched-pairs test. Of these, the RMSSD and LF/HF calculations were used to observe the fluctuations of inhibitory activity and cardiovagal balance through different tension states. RESULTS: Seven individuals have sufficient reliable data for analysis. They have reached at least a level 3 of behavioral excitation (moderately tense) or more (very to extremely tense, level 4 and 5) and have been retained for further analysis. In sum, a total of 197 periods of tension were kept, made up of 46 periods of slight excitation (level 2), 18 of moderate excitation (level 3), 10 of high excitation (level 4), and 5 of extreme agitation (level 5). Variations in the HRV as a function of degree of excitation are observed for RMSSD index only (inhibitory parasympathetic activity). The changes from calm to increasing levels of excitation are characterized by a significant downfall in RMSSD index when patients were evaluated to be in a very high level of tension (level 4). CONCLUSION: The presence of precursors to agitation, reflected in the falling-off of parasympathetic activity, offers potentially interesting prospects for therapeutic development.

9.
Sci Rep ; 4: 6063, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25317907

ABSTRACT

Vision is a constructive process. For example, a square, flashed at two distinct locations one after the other, appears to move smoothly between the two locations rather than as two separate flashes (apparent motion). Apparent motion is usually perceived along the shortest path between locations. Previous studies have shown that retinotopic activity in V1 correlates well with the subjective filling-in in apparent motion. If V1 activity truly reflects illusory motion, it should flexibly reflect filling-in of any path, subjectively perceived. Here, we used a path-guided apparent motion paradigm in which a faint cue, presented in addition to the squares, leads to a curved illusory motion path. We found retinotopic activity in V1 to reflect the illusory filling-in of the curved path, similarly to filling-in with linear, shortest paths. Moreover, our results show that activity along the linear path was less selective to stimulus conditions than the activity along the curved path. This finding may be interpreted as V1 activity representing a small subset of infinitely many possible solutions to ambiguous stimuli, whilst giving more weight to the shortest path/energy solution.


Subject(s)
Brain Mapping , Visual Cortex/physiology , Visual Perception/physiology , Adult , Female , Humans , Illusions , Magnetometry , Male , Middle Aged , Motion , Photic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...