Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 38(16): 4913-4920, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35417180

ABSTRACT

Experimental data for tridecyl dimethyl phosphine oxide (C13DMPO) adsorption layers at the water/air interface, including equilibrium surface tension and surface dilational viscoelasticity, are measured by bubble and drop profile analysis tensiometry at different solution concentrations and surface area oscillation frequencies. The results are used to assess the applicability of a multistate model with more than two possible adsorption states. For the experiments with single drops, the depletion of surfactant molecules due to adsorption at the drop surface is taken into account. For the assessment, the same set of model parameters is used for the description of all obtained experimental dependencies. The agreement between the proposed model and the experimental data shows that for the nonionic surfactant C13DMPO, the description of the adsorption layer behavior by three adsorption states is superior to that with only two adsorption states.

2.
Langmuir ; 35(47): 15214-15220, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31630519

ABSTRACT

A two-component interfacial layer model was employed to describe the experimental results obtained for various surfactants. In contrast to the previous works, here it is shown that the adsorption activity of alkane depends on its interaction with the adsorbed surfactant and is proportional to the surface coverage by this surfactant. Also, it is assumed that this increase of the adsorption activity parameter is limited by some maximum value. This model provides a good description of the influence of hexane and dodecane, which results in the decrease of surface tension by 2-5 mN/m at very low surfactant concentrations. The adsorbed amounts of the surfactant and alkane molecules in this low surfactant concentration range have been calculated. The reorientation model of surfactant adsorption predicts a smaller number of alkane molecules per one surfactant molecule than that which follows from the Frumkin model.

3.
Langmuir ; 34(23): 6678-6686, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29783835

ABSTRACT

Drop profile analysis tensiometry used in the oscillating drop mode provides the dilational viscoelasticity of adsorption layers at liquid interfaces. Applied during the progress of adsorption the dynamic surface rheology can be monitored. For ß-casein solutions at the same surface pressure values, the larger the dynamic dilational viscoelasticity the longer the adsorption time, i.e., the smaller the studied protein concentration is. For ß-lactoglobulin and human serum albumin, the differences in the viscoelasticity values are less or not dependent on the adsorption time at identical surface pressures. The observed effects are caused by the flexibility of BCS, while the globular proteins BLG and HSA do not change their conformation significantly within the adsorption layer.


Subject(s)
Proteins/chemistry , Adsorption , Humans , Lactoglobulins/chemistry , Pressure , Rheology , Serum Albumin, Human/chemistry , Solutions/chemistry , Surface Properties , Viscosity , Water/chemistry
4.
Langmuir ; 29(7): 2233-41, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23347396

ABSTRACT

The interfacial behavior of ß-casein (ßCS) has been investigated in presence of the cationic surfactant dodecyl trimethyl ammonium bromide (DoTAB) at the water/hexane interface and compared to that obtained for the water/air interface. The used experimental technique is a drop profile analysis tensiometer specially equipped with a coaxial double capillary, which allows investigation of sequential adsorption of individual components besides the traditional simultaneous adsorption of two species. This method also provides the dilational rheological measurements based on low frequency harmonic drop oscillations. The tensiometric results show that the equilibrium states of the mixed ßCS/DoTAB layers built up on the two different routes do not differ significantly, that is, the general compositions of the mixed layers are similar. However, the results of dilational rheology for the two adsorption strategies are remarkably different indicating different dynamic characteristics of the adsorbed layers. These findings suggest that the respective mixed layers are more proteinlike if they are formed via sequential adsorption and more surfactant-like after simultaneous adsorption. In contrast to the W/A interface, at the W/H interface proteins remain at the interface once adsorbed and cannot be displaced just by competitive adsorption of surfactants.


Subject(s)
Caseins/chemistry , Hexanes/chemistry , Surface-Active Agents/chemistry , Water/chemistry , Adsorption , Surface Properties
5.
Langmuir ; 27(3): 965-71, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21188992

ABSTRACT

Interfacial tension measurements have been performed at the water/hexane interface on mixtures of the bovine milk protein ß-lactoglobulin and positively charged cationic surfactants (alkytrimethylammonium bromides). The addition of surfactants with different chain lengths leads to the formation of protein-surfactant complexes with different adsorption properties as compared to those of the single protein. In this study, the formation of complexes has been observed clearly for protein-long chain surfactant (TTAB and CTAB) mixtures, which has shown in addition to specific electrostatic interactions the relevance of hydrophobic interactions between surfactant molecules and the protein. The modeling of interfacial tension data by using a mixed adsorption model provides a quantitative understanding of the mixture behavior. Indeed, the value of the adsorption constant of the protein obtained in the presence of surfactants has strongly varied as compared to the single protein. Actually, this parameter which represents the affinity of the molecule for the interface is representative of the hydrophobic character of the compound and so of its surface activity. Even if a more hydrophobic and more surface active protein-surfactant complex has been formed, the replacement of this complex from the interface by surfactants close to their cmc was observed.


Subject(s)
Oils/chemistry , Proteins/chemistry , Surface-Active Agents/chemistry , Adsorption , Models, Theoretical , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...