Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Mhealth Uhealth ; 4(2): e50, 2016 May 11.
Article in English | MEDLINE | ID: mdl-27169345

ABSTRACT

BACKGROUND: Hospitals today are introducing new mobile apps to improve patient care and workflow processes. Mobile device adoption by hospitals fits with present day technology behavior; however, requires a deeper look into hospital device policies and the impact on patients, staff, and technology development. Should hospitals spend thousands to millions of dollars to equip all personnel with a mobile device that is only used in a hospital environment? Allowing health care professionals to use personal mobile devices at work, known as bring-your-own-device (BYOD), has the potential to support both the hospital and its employees to deliver effective and efficient care. OBJECTIVE: The objectives of this research were to create a mobile app development guideline for a BYOD hospital environment, apply the guideline to the development of an in-house mobile app called TaskList, pilot the TaskList app within Boston Children's Hospital (BCH), and refine the guideline based on the app pilot. TaskList is an Apple operating system (iOS)-based app designed for medical residents to monitor, create, capture, and share daily collaborative tasks associated with patients. METHODS: To create the BYOD guidelines, we developed TaskList that required the use of mobile devices among medical resident. The TaskList app was designed in four phases: (1) mobile app guideline development, (2) requirements gathering and developing of TaskList fitting the guideline, (3) deployment of TaskList using BYOD with end-users, and (4) refinement of the guideline based on the TaskList pilot. Phase 1 included understanding the existing hospital BYOD policies and conducting Web searches to find best practices in software development for a BYOD environment. Phase 1 also included gathering subject matter input from the Information Services Department (ISD) at BCH. Phase 2 involved the collaboration between the Innovation Acceleration Program at BCH, the ISD Department and the TaskList Clinical team in understanding what features should be built into the app. Phase 3 involved deployment of TaskList on a clinical floor at BCH. Lastly, Phase 4 gathered the lessons learned from the pilot to refine the guideline. RESULTS: Fourteen practical recommendations were identified to create the BCH Mobile Application Development Guideline to safeguard custom applications in hospital BYOD settings. The recommendations were grouped into four categories: (1) authentication and authorization, (2) data management, (3) safeguarding app environment, and (4) remote enforcement. Following the guideline, the TaskList app was developed and then was piloted with an inpatient ward team. CONCLUSIONS: The Mobile Application Development guideline was created and used in the development of TaskList. The guideline is intended for use by developers when addressing integration with hospital information systems, deploying apps in BYOD health care settings, and meeting compliance standards, such as Health Insurance Portability and Accountability Act (HIPAA) regulations.

2.
JMIR Mhealth Uhealth ; 2(2): e25, 2014 May 22.
Article in English | MEDLINE | ID: mdl-25099928

ABSTRACT

BACKGROUND: Advances in smartphones and the wide usage of social networking systems offer opportunities for the development of innovative interventions to promote physical activity. To that end, we developed a persuasive and social mHealth application designed to monitor and motivate users to walk more every day. OBJECTIVE: The objectives of this project were to conduct a focused review on the fundamental characteristics of mHealth for physical activity promotion, to develop an mHealth application that meets such characteristics, and to conduct a feasibility study to deploy the application in everyday life. METHODS: This project started as an analytical study to review the fundamental characteristics of the technologies used in physical activity monitoring and promotion. Then, it was followed by a technical development of the application. Next, a 4 week deployment was conducted where participants used the application as part of their daily life. A think-aloud method and in-depth semistructured interviews were conducted following the deployment. A qualitative description method was used to thematically analyze the interviews. Feasibility measures included, adherence to the program, user-system interactions, motivation to use, and experience with physical activity and online social interactions. RESULTS: There were seven fundamental characteristics of physical activity monitoring and promotion that were identified, which were then used as a foundation to develop the application. There were fourteen participants that enrolled in the application evaluation. The age range was from 24 to 45; body mass index ranged from 18.5 to 42.98, with 4 of the subjects falling into the category "obese". Half of them were experienced with smartphones, and all were familiar with a social network system. There were thirteen participants that completed the study; one was excluded. Overall, participants gave high scores to almost all of the usability factors examined, with averages of 4.52 out of a 5.00 maximum. Over 29 days, participants used the application for a total of 119,380 minutes (average=7.57 hours/day/participant; SD 1.56). CONCLUSIONS: Based on the fundamental characteristics, the application was successfully developed. The usability results suggest that the system is usable and user satisfaction was high. Deploying the application was shown to be feasible for the promotion of daily physical activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...