Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Antimicrob Agents Chemother ; 68(5): e0136823, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38572959

ABSTRACT

Leishmaniasis is a neglected tropical disease infecting the world's poorest populations. Miltefosine (ML) remains the primary oral drug against the cutaneous form of leishmaniasis. The ATP-binding cassette (ABC) transporters are key players in the xenobiotic efflux, and their inhibition could enhance the therapeutic index. In this study, the ability of beauvericin (BEA) to overcome ABC transporter-mediated resistance of Leishmania tropica to ML was assessed. In addition, the transcription profile of genes involved in resistance acquisition to ML was inspected. Finally, we explored the efflux mechanism of the drug and inhibitor. The efficacy of ML against all developmental stages of L. tropica in the presence or absence of BEA was evaluated using an absolute quantification assay. The expression of resistance genes was evaluated, comparing susceptible and resistant strains. Finally, the mechanisms governing the interaction between the ABC transporter and its ligands were elucidated using molecular docking and dynamic simulation. Relative quantification showed that the expression of the ABCG sub-family is mostly modulated by ML. In this study, we used BEA to impede resistance of Leishmania tropica. The IC50 values, following BEA treatment, were significantly reduced from 30.83, 48.17, and 16.83 µM using ML to 8.14, 11.1, and 7.18 µM when using a combinatorial treatment (ML + BEA) against promastigotes, axenic amastigotes, and intracellular amastigotes, respectively. We also demonstrated a favorable BEA-binding enthalpy to L. tropica ABC transporter compared to ML. Our study revealed that BEA partially reverses the resistance development of L. tropica to ML by blocking the alternate ATP hydrolysis cycle.


Subject(s)
ATP-Binding Cassette Transporters , Antiprotozoal Agents , Depsipeptides , Drug Resistance , Leishmania tropica , Molecular Docking Simulation , Phosphorylcholine , Phosphorylcholine/analogs & derivatives , Leishmania tropica/drug effects , Leishmania tropica/genetics , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/antagonists & inhibitors , Depsipeptides/pharmacology , Antiprotozoal Agents/pharmacology , Phosphorylcholine/pharmacology , Humans , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/antagonists & inhibitors
2.
Metabolites ; 14(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38668360

ABSTRACT

Drug discovery was initially attributed to coincidence or experimental research. Historically, the traditional approaches were complex, lengthy, and expensive, entailing costly random screening of synthesized compounds or natural products coupled with in vivo validation largely depending on the availability of appropriate animal models. Currently, in silico modeling has become a vital tool for drug discovery and repurposing. Molecular docking and dynamic simulations are being used to find the best match between a ligand and a molecule, an approach that could help predict the biomolecular interactions between the drug and the target host. Beauvericin (BEA) is an emerging mycotoxin produced by the entomopathogenic fungus Beauveria bassiana, being originally studied for its potential use as a pesticide. BEA is now considered a molecule of interest for its possible use in diverse biotechnological applications in the pharmaceutical industry and medicine. In this manuscript, we provide an overview of the repurposing of BEA as a potential therapeutic agent for multiple diseases. Furthermore, considerable emphasis is given to the fundamental role of in silico techniques to (i) further investigate the activity spectrum of BEA, a secondary metabolite, and (ii) elucidate its mode of action.

3.
Res Vet Sci ; 153: 17-22, 2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36279791

ABSTRACT

Leishmaniasis is a neglected disease and a public health concern. Chemotherapeutic agents available for the treatment of parasitic infections, including leishmaniasis, have several limitations. For that, we designed a highly sensitive assay using RT-aqPCR to evaluate the efficacy of antileishmanial drugs using SYBR Green to quantify the expression of marker genes. A matrix of reactions using different annealing temperatures and primer concentrations was tested to obtain optimum assay performance. The standard curves designed for quantification of parasites and macrophages showed linearity over a 9-log DNA concentration range. The amount of input target sequence was determined by plotting the Ct value of drug-exposed cells on the standard curves. We then tested the efficacy of miltefosine against Leishmania tropica. The RT-aqPCR assay was more sensitive, reproducible, and time-efficient than the conventional microscopic counting method. Most of the anti-parasitic drugs available have significant drawbacks, and there is an urgent need to develop new alternatives. Our assay expedites preclinical testing efficacy of candidate anti-parasitic compounds.

4.
Comput Biol Med ; 141: 105171, 2022 02.
Article in English | MEDLINE | ID: mdl-34968860

ABSTRACT

BACKGROUND: Scientists are still battling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus 2019 (COVID-19) pandemic so human lives can be saved worldwide. Secondary fungal metabolites are of intense interest due to their broad range of pharmaceutical properties. Beauvericin (BEA) is a secondary metabolite produced by the fungus Beauveria bassiana. Although promising anti-viral activity has previously been reported for BEA, studies investigating its therapeutic potential are limited. METHODS: The objective of this study was to assess the potential usage of BEA as an anti-viral molecule via protein-protein docking approaches using MolSoft. RESULTS: In-silico results revealed relatively favorable binding energies for BEA to different viral proteins implicated in the vital life stages of this virus. Of particular interest is the capability of BEA to dock to both the main coronavirus protease (Pockets A and B) and spike proteins. These results were validated by molecular dynamic simulation (Gromacs). Several parameters, such as root-mean-square deviation/fluctuation, the radius of gyration, H-bonding, and free binding energy were analyzed. Computational analyses revealed that interaction of BEA with the main protease pockets in addition to the spike glycoprotein remained stable. CONCLUSION: Altogether, our results suggest that BEA might be considered as a potential competitive and allosteric agonist inhibitor with therapeutic options for treating COVID-19 pending in vitro and in vivo validation.


Subject(s)
Antiviral Agents , Depsipeptides/pharmacology , SARS-CoV-2 , Antiviral Agents/pharmacology , COVID-19 , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/drug effects
5.
J Fungi (Basel) ; 7(11)2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34829214

ABSTRACT

The cedar forests of Lebanon have been threatened by the outbreak caused by climate change of a web-spinning sawfly, Cephalcia tannourinensis (Hymenoptera: Pamphiliidae), which negatively impacted the survival of one of the oldest tree species on earth. In this study, we investigated the occurrence of naturally soil-inhabiting entomopathogenic fungi for their role in containing the massive outbreak of this insect. We used a combination of fungal bioexploration methods, including insect bait and selective media. Morphological features and multilocus phylogeny-based on Sanger sequencing of the transcripts encoding the translation elongation factor 1-alpha (TEF-α), RNA polymerase II second largest subunit (RBP2), and the nuclear intergenic region (Bloc) were used for species identification. The occurrence rate of entomopathogenic fungi (EPF) varied with location, soil structure, forest structure, and isolation method. From 15 soil samples positive for fungal occurrence, a total of 249 isolates was obtained from all locations using different isolation methods. The phylogenetic analysis confirmed the existence of two novel indigenous species: Beauveria tannourinensis sp. nov. and Beauveria ehdenensis sp. nov. In conclusion, the present survey was successful (1) in optimizing the isolation methods for EPF, (2) investigating the natural occurrence of Beauveria spp. in outbreak areas of C. tannourinensis, and (3) in characterizing the presence of new Beauveria species in Lebanese cedar forest soil.

6.
Fungal Biol ; 125(12): 1009-1016, 2021 12.
Article in English | MEDLINE | ID: mdl-34776228

ABSTRACT

Endophytic growth of arthropod pathogenic fungi can parasitize insect herbivores without causing damage to the crop. However, studies addressing this tritrophic interaction are absent. Here, the endophytic arthropod pathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordyciptaceae), the polyphagous two-spotted spider mite Tetranychus urticae Koch (Trombidiformes: Tetranychidae), and its preferred plant host Phaseolus vulgaris L. (Fabales: Fabaceae) were selected to study the multi-kingdom interactions among plants, arthropods, and entomopathogenic fungi. Real-Time PCR analysis of nine defense-related genes revealed that a broad range of plant defense mechanisms is activated in response to the endophytic growth of B. bassiana. Moreover, we studied the molecular mechanism adapted by the two-spotted spider mite that underlies resistance. The analysis of 41 detoxification genes revealed that relatively moderate, high, and few numbers of genes were changed in the adults, nymphs, and eggs stages of T. urticae, respectively, after inoculation on colonized tissues of P. vulgaris. The endophytic growth of B. bassiana can have a negative effect on the growth and performance of the pest, in a developmental stage-dependent manner, by priming plant defense pathways. In parallel, the herbivore induces a broad range of detoxification genes that could potentially be involved in adaptation to endophytically colonized plant tissues.


Subject(s)
Beauveria , Tetranychidae , Animals , Beauveria/genetics , Herbivory , Insecta , Pest Control, Biological
7.
Vet Parasitol ; 298: 109553, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34388422

ABSTRACT

The entomopathogenic fungus Beauveria bassiana has been successfully used for the control of phytopathogenic arthropods and there are a growing number of studies suggesting that this kind of fungus could also be used for the control of ectoparasites in mammals. This study evaluated for the first time the efficacy of different Beauveria strains against the eggs of Sarcoptes scabiei collected from experimentally infected pigs. Eggs were exposed to fungal conidia and monitored for hatching over 10 days. The strongest effect (28.75 % of hatching inhibition) was obtained with a commercial B. bassiana strain. Furthermore, the detection of fungal genomic within the surface-cleaned eggs demonstrated the ability of B. bassiana to penetrate and proliferate in the egg-shell of S. scabiei. This study provides the first evidence, using molecular techniques, that the development of mycoacaricides may be of interest for the control of S. scabiei infection.


Subject(s)
Beauveria , Pest Control, Biological , Sarcoptes scabiei , Animals , Beauveria/physiology , Ovum/microbiology , Sarcoptes scabiei/microbiology , Scabies/prevention & control , Spores, Fungal , Swine
8.
Sci Rep ; 11(1): 10865, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035330

ABSTRACT

Multi-drug resistance is posing major challenges in suppressing the population of pests. Many herbivores develop resistance, causing a prolonged survival after exposure to a previously effective pesticide. Consequently, resistant pests reduce the yield of agricultural production, causing significant economic losses and reducing food security. Therefore, overpowering resistance acquisition of crop pests is a must. The ATP binding cassette transporters (ABC transporters) are considered as the main participants to the pesticide efflux and their neutralization will greatly contribute to potentiate failed treatments. Real-Time PCR analysis of 19 ABC transporter genes belonging to the ABCB, ABCC, ABCG, and ABCH revealed that a broad range of efflux pumps is activated in response to the exposure to pesticides. In this study, we used beauvericin (BEA), a known ABC transporters modulator, to resensitize different strains of Tetranychus urticae after artificial selection for resistance to cyflumetofen, bifenazate, and abamectin. Our results showed that the combinatorial treatment of pesticide (manufacturer's recommended doses) + BEA (sublethal doses: 0.15 mg/L) significantly suppressed the resistant populations of T. urticae when compared to single-drug treatments. Moreover, after selective pressure for 40 generations, the LC50 values were significantly reduced from 36.5, 44.7, and 94.5 (pesticide) to 8.3, 12.5, and 23.4 (pesticide + BEA) for cyflumetofen, bifenazate, and abamectin, respectively. While the downstream targets for BEA are still elusive, we demonstrated hereby that it synergizes with sub-lethal doses of different pesticides and increases their effect by inhibiting ABC transporters. This is the first report to document such combinatorial activity of BEA against higher invertebrates paving the way for its usage in treating refractory cases of resistance to pesticides. Moreover, we demonstrated, for the first time, using in silico techniques, the higher affinity of BEA to ABC transformers subfamilies when compared to xenobiotics; thus, elucidating the pathway of the mycotoxin.


Subject(s)
ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Arthropods/drug effects , Arthropods/metabolism , Depsipeptides/pharmacology , Pesticides/pharmacology , ATP-Binding Cassette Transporters/chemistry , Animals , Depsipeptides/chemistry , Dose-Response Relationship, Drug , Drug Resistance , Drug Synergism , Gene Expression Regulation/drug effects , Models, Molecular , Molecular Conformation , Pesticides/chemistry , Protein Binding , Structure-Activity Relationship
9.
Ticks Tick Borne Dis ; 12(5): 101732, 2021 09.
Article in English | MEDLINE | ID: mdl-33992909

ABSTRACT

Establishing and maintaining tick colonies in the laboratory is essential for studying their biology and pathogen transmission, or for the development of new tick control methods. Due to their requirement for very high humidity, these laboratory-bred colonies are frequently subject to fungal contamination. In the present study, we aimed to identify the fungal species that contaminated a laboratory-reared colony of Ixodes ricinus through microscopic observation and molecular identification. We identified three different taxa isolated from the ticks: Aspergillus parasiticus, Penicillium steckii, and Scopulariopsis brevicaulis. These three species are usually regarded as environmental saprophytic molds but both direct and indirect evidence suggest that they could also be considered as entomopathogenic fungi. Although we do not have any direct evidence that the fungi isolated from I. ricinus in this study could cause lethal infections in ticks, we observed that once infected, heavy fungal growth coupled with very high mortality rates suggest that studying the entomopathogenic potential of these fungi could be relevant to biological tick control.


Subject(s)
Fungi/isolation & purification , Ixodes/microbiology , Animals , Aspergillus/isolation & purification , Laboratories , Penicillium/isolation & purification , Tick Control/trends
10.
Mol Biol Rep ; 48(3): 2485-2496, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33759051

ABSTRACT

Entomopathogenic fungi are an important factor in the natural regulation of arthropod populations. Moreover, some can exist as an endophyte in many plant species and establish a mutualistic relationship. In this study, we have investigated the endophytic growth of Beauveria bassiana within different tissues of Phaseolus vulgaris in the presence and absence of Tetranuychus urticae. After the colonization of the B. bassiana within the internal tissues of P. vulgaris. The susceptibility of T. urticae appeared to depend on the life stage where high, moderate, and low mortalities were recorded among adults, nymphs, and eggs, respectively. In addition, this study provided, for the first time, molecular insight into the endophytic growth of B. bassiana by analyzing the expression of several genes involved in the development of the entomopathogenic fungi at 0-, 2-, and 7- days post-inoculation. B. bassiana displayed preferential tissue colonization within P. vulgaris that can be put into the following order based on the detection rate: leaf > stem > root. After analyzing the development-implicated genes (degrading enzymes, sugar transporter, hydrophobins, cell wall synthesis, secondary metabolites, stress management), the most remarkable finding is the detection of behavioral change between parasitic and endophytic Beauveria during post-penetration events. This study elucidates the tri-trophic interaction between fungus-plant-herbivore.


Subject(s)
Beauveria/growth & development , Beauveria/genetics , Endophytes/growth & development , Endophytes/genetics , Phaseolus/microbiology , Phaseolus/parasitology , Tetranychidae/physiology , Animals , Beauveria/isolation & purification , DNA, Fungal/analysis , Endophytes/isolation & purification , Gene Expression Regulation, Fungal , Life Cycle Stages , Pest Control, Biological , Tetranychidae/growth & development , Tetranychidae/pathogenicity
11.
Front Microbiol ; 12: 788741, 2021.
Article in English | MEDLINE | ID: mdl-35095801

ABSTRACT

The COVID-19 pandemic involved millions of people and diabetes was identified as an associated comorbidity. Initiation of systemic corticosteroids in patients suffering from severe COVID-19 was associated with lower mortality. A surge of invasive fungal infections of the maxillofacial region, namely mucormycosis, was linked to a deadly infection known as black fungus. Black fungus, diabetes, corticosteroids, and coronavirus disease 2019 (COVID-19) all have a dysregulated immune response in common, which partly could also be attributed to interleukin 37 (IL-37). IL-37, a new cytokine of the IL-1 family, known for broadly reducing innate inflammation as well as acquired immune responses. The use of corticosteroids in diabetic COVID-19 patients, crowded hospitals, and lack of medical oxygen should be carefully considered to reduce COVID-associated secondary infections.

12.
Article in English | MEDLINE | ID: mdl-32122897

ABSTRACT

Scabies is a frequent cutaneous infection caused by the mite Sarcoptes scabiei in a large number of mammals, including humans. As the resistance of S. scabiei against several chemical acaricides has been previously documented, the establishment of alternative and effective control molecules is required. In this study, the potential acaricidal activity of beauvericin was assessed against different life stages of S. scabiei var. suis and in comparison with dimpylate and ivermectin, two commercially available molecules used for the treatment of S. scabiei infection in animals and/or humans. The toxicity of beauvericin against cultured human fibroblast skin cells was evaluated using an MTT proliferation assay. In our in vitro model, developmental stages of S. scabiei were placed in petri dishes filled with Columbia agar supplemented with pig serum and different concentrations of the drugs. Cell sensitivity assays demonstrated low toxicity of beauvericin against primary human fibroblast skin cells. At 0.5 and 5 mM, beauvericin showed higher activity against adults and eggs of S. scabiei compared to dimpylate and ivermectin. These results revealed that the use of beauvericin is promising and might be considered for the treatment of S. scabiei infection.


Subject(s)
Acaricides/therapeutic use , Depsipeptides/therapeutic use , Drug Resistance , Sarcoptes scabiei/drug effects , Scabies/drug therapy , Acaricides/adverse effects , Animals , Cells, Cultured , Depsipeptides/adverse effects , Diazinon/therapeutic use , Fibroblasts/drug effects , Humans , Ivermectin/therapeutic use , Larva/drug effects , Ovum/drug effects , Skin/cytology , Skin/drug effects , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...