Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Med Biol ; 66(22)2021 11 18.
Article in English | MEDLINE | ID: mdl-34736226

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a restrictive interstitial lung disease that causes lung function decline by lung tissue scarring. Although lung function decline is assessed by the forced vital capacity (FVC), determining the accurate progression of IPF remains a challenge. To address this challenge, we proposed Fibro-CoSANet, a novel end-to-end multi-modal learning based approach, to predict the FVC decline. Fibro-CoSANet utilized computed tomography images and demographic information in convolutional neural network frameworks with a stacked attention layer. Extensive experiments on the OSIC Pulmonary Fibrosis Progression Dataset demonstrated the superiority of our proposed Fibro-CoSANet by achieving new state-of-the-art modified Laplace log-likelihood score of -6.68. This network may benefit research areas concerned with designing networks to improve the prognostic accuracy of IPF. The source-code for Fibro-CoSANet is available at: https://github.com/zabir-nabil/Fibro-CoSANet.


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Lung , Retrospective Studies , Tomography, X-Ray Computed/methods , Vital Capacity
SELECTION OF CITATIONS
SEARCH DETAIL