Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37834643

ABSTRACT

Magnesium (Mg)/Polylactic acid (PLA) composites are promising materials for bone regeneration and tissue engineering applications. PLA is a biodegradable and biocompatible polymer that can be easily processed into various shapes and structures, such as scaffolds, films, and fibers, but has low biodegradability. Mg is a biocompatible metal that has been proven to have good biodegradability and osteoconductivity, which makes it suitable for bone tissue engineering. In this study, we prepared and characterized a Mg/PLA composite as a potential material for direct ink writing (DIW) in 3D printing. The results showed that the addition of Mg has a significant impact on PLA's thermal and structural properties and has also significantly increased the degradation of PLA. XRD was used to determine the degree of crystallinity in the PLA/Mg composite, which provides insight into its thermal stability and degradation behavior. The crystallization temperature of PLA increased from 168 to 172 °C for a 15 wt% Mg incorporation, and the melting temperature reduced from 333 °C to 285 °C. The surface morphology and composition of these films were analyzed with SEM. The films with 5 wt% of Mg particles displayed the best-ordered honeycomb structure in their film form. Such structures are considered to affect the mechanical, biological and heat/mass transfer properties of the Mg/PLA composites and products. Finally, the composite ink was used as a feed for direct ink writing in 3D printing, and the preliminary 3D printing experiments were successful in resulting in dimensionally and structurally integral scaffold samples. The shape fidelity was not very good, and some research is needed to improve the rheological properties of the ink for DIW 3D printing.

2.
Turk J Chem ; 47(1): 33-39, 2023.
Article in English | MEDLINE | ID: mdl-37720853

ABSTRACT

Due to material design and fabrication flexibility, additive manufacturing (AM) or 3D printing (3DP) processes and polymer composites have paved their way into several industrial sectors. The quality of 3D printed polymer composites is highly dependent on the reinforcement content of polymers and 3DP process parameters. Several experimental studies are performed to optimize the reinforcement contents and process parameters; however, exploring the numerical modeling and simulation techniques is vital to lower the research and development costs. In the study, the numerical simulations for the 3DP process were performed using Digimat® software for carbon fiber-reinforced polyamide-6 (PA6) composites fabricated via the fused filament fabrication (FFF) process to evaluate the effect of reinforcement content on deflections, warpages, and process-induced residual stresses. The FFF process simulations were performed to fabricate tensile testing coupons with pure PA6 and 10%-28% CF-reinforced PA6 composites. A significant impact of CF-reinforcement was observed on the deflections, warpages, and residual stresses. The maximum displacement of 4.518 mm and critical warpage of 3.012 was observed for pure PA6 material. However, with the addition of CF reinforcement, a maximum deflection of 3.369 mm and critical warpage of 2.246 was achieved for PA6 reinforced with 28% CF (PA6-CF28). The improved 3D printed specimen quality was acquired at the cost of increased residual stresses of 14.53 MPa compared to 11.75 MPa in pure PA6 specimen. The CF reinforcement significantly improved the 3DP manufacturing performance of PA6/CF composites, reducing deflections and warpages.

3.
Materials (Basel) ; 16(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36984356

ABSTRACT

Bone tissue engineering (BTE) is an active area of research for bone defect treatment. Some polymeric materials have recently gained adequate attention as potential materials for BTE applications, as they are biocompatible, biodegradable, inexpensive, lightweight, easy to process, and recyclable. Polyetherimide (PEI), acrylonitrile butadiene styrene (ABS), and polyamide-12 (PA12) are potential biocompatible materials for biomedical applications due to their excellent physical, chemical, and mechanical properties. The current study presents preliminary findings on the process simulations for 3D-printed polymeric porous scaffolds for a material extrusion 3D printing (ME3DP) process to observe the manufacturing constraints and scaffold quality with respect to designed structures (porous scaffolds). Different unit cell designs (ventils, grid, and octet) for porous scaffolds, virtually fabricated using three polymeric materials (PEI, ABS, and PA12), were investigated for process-induced defections and residual stresses. The numerical simulation results concluded that higher dimensional accuracy and control were achieved for grid unit cell scaffolds manufactured using PEI material; however, minimum residual stresses were achieved for grid unit cell scaffolds fabricated using PA12 material. Future studies will include the experimental validation of numerical simulation results and the biomechanical performance of 3D-printed polymeric scaffolds.

4.
Polymers (Basel) ; 14(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36080564

ABSTRACT

The material extrusion additive manufacturing (MEAM) process for polymers seems straightforward. However, several controlled and uncontrolled factors affect the 3D printed product quality, e.g., MEAM process parameters, thermomechanical properties of the material, and part design. Therefore, it is crucial to understand these interlinked factors of part geometry, material properties, and 3D printing (3DP) process parameters to optimize 3D printed product quality. The numerical models and simulation tools can predict the thermomechanical performance of the MEAM process under given input parameters (material, design, and process variables) and reduce the research and development costs significantly. However, the numerical models and tools need further exploration and validation of simulation predictions for their adaptability and reliability. Therefore, in this study, numerical simulations were performed to observe the impact of process parameters on the part quality of MEAM 3D printed components. The two crucial process parameters (i.e., extrusion temperature and layer resolution) were varied while keeping the other process parameters, part geometry (tensile testing coupon), and material properties (acrylonitrile butadiene styrene (ABS)) constant. These two process parameters were sequentially optimized for optimum part quality, first by varying the extrusion temperature and secondly by changing the printing resolution using the optimum printing temperature. The 3DP process quality was evaluated in terms of dimensional accuracy, distortions, and residual stresses. Finally, the specimens were 3D printed under similar process conditions to validate the numerical model predictions.

5.
Polymers (Basel) ; 13(10)2021 May 19.
Article in English | MEDLINE | ID: mdl-34069317

ABSTRACT

The commercial availability of 3D printers for continuous fiber-reinforced 3D-printed (CFR3DP) composites has attracted researchers to evaluate the thermomechanical properties of these materials. The improvement of strength through chopped or continuous fiber reinforcements in polymers could provide remarkable results, and its exploration can provide broad applications in several industries. The evaluation of mechanical properties of these materials at elevated temperatures is vital for their utilization in severe operating conditions. This study provides insight into the effect of different fiber reinforcements (Kevlar, fiberglass, and high-strength high-temperature fiberglass) and temperatures on the creep and recovery behavior of CFR3DP Onyx composites. Experimental results were also compared with analytical models, i.e., Burger's model and Weibull distribution function, for creep and recovery. Results from analytical models agreed well with experimental results for all the materials and temperatures. A significant drop in maximum and residual strains was observed due to the introduction of fibers. However, the creep resistance of all the materials was affected at higher temperatures. Minimum creep strain was observed for Onyx-FG at 120 °C; however, at the same temperature, the minimum residual strain was observed for Onyx-KF. Based on the analytical models and experimental results, the role of fiber reinforcements on the improvement of creep and recovery performance is also discussed.

6.
Materials (Basel) ; 13(14)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32708520

ABSTRACT

The sports industry is an ever-growing sector worldwide. With technological advancements in information technologies, the sports industry has merged with the entertainment industry, reaching and influencing billions of people globally. However, to ensure and advance the safety, security, and sustainability of the sports industry, technological innovations are always needed in several manufacturing and materials processes to achieve cost-effectiveness, efficiency, durability, reusability, and recyclability of products used in this industry. For example, 90% of the field hockey equipment produced in the world comes from Sialkot, Pakistan. Most export quality field hockey equipment is currently produced via reinforcement of glass/carbon fibers in epoxy resin. The current study aimed to introduce new materials for field hockey equipment to reduce manufacturing costs and the environmental impact of synthetic materials, without comprising the quality of the final product. Our literature review on natural fibers revealed that they offer excellent and compatible mechanical properties. Based on extensive experimental studies, we concluded that banana fiber reinforced hybrid composites could be an alternative to pure glass fiber reinforced composites, with comparable and even higher load withstanding capabilities. Using banana fiber reinforced hybrid composites for the fabrication of hockey products would cut costs and lower the environmental impact stemming from the uses of biodegradable organic materials. It will also lead to the development of a domestic economy based on domestic resources.

SELECTION OF CITATIONS
SEARCH DETAIL
...