Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Environ Toxicol ; 39(6): 3666-3678, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38506534

ABSTRACT

Liver malignancy is well recognized as a prominent health concern, with numerous treatment options available. Natural products are considered a renewable source, providing inspiring chemical moieties that could be used for cancer treatment. Suaeda vermiculata Forssk has traditionally been employed for management of hepatic conditions, including liver inflammation, and liver cirrhosis, as well as to improve general liver function. The findings of our earlier study demonstrated encouraging in vivo hepatoprotective benefits against liver injury generated by paracetamol and carbon tetrachloride. Additionally, Suaeda vermiculata Forssk exhibited cytotoxic activities in vitro against Hep-G2 cell lines and cell lines resistant to doxorubicin. The present investigation aimed to examine the potential in vivo hepatoprotective efficacy of Suaeda vermiculata Forssk extract (SVE) against hepatocellular carcinoma induced by diethylnitrosamine (DENA) in rats. The potential involvement of the PI3K/AKT/mTOR/NF-κB pathway was addressed. Sixty adult male albino rats were allocated into five groups randomly (n = 10). First group received a buffer, whereas second group received SVE only, third group received DENA only, and fourth and fifth groups received high and low doses of SVE, respectively, in the presence of DENA. Liver toxicity and tumor markers (HGFR, p-AKT, PI3K, mTOR, NF-κB, FOXO3a), apoptosis markers, and histopathological changes were analyzed. The current results demonstrated that SVE inhibited PI3K/AKT/mTOR/NF-κB pathway as well as increased expression of apoptotic parameters and FOXO3a levels, which were deteriorated by DENA treatment. Furthermore, SVE improved liver toxicity markers and histopathological changes induced by DENA administration. This study provided evidence for the conventional hepatoprotective properties attributed to SV and investigated the underlying mechanism by which its extract, SVE, could potentially serve as a novel option for hepatocellular carcinoma (HCC) treatment derived from a natural source.


Subject(s)
Carcinoma, Hepatocellular , Forkhead Box Protein O3 , NF-kappa B , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Male , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Forkhead Box Protein O3/metabolism , NF-kappa B/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/pathology , Rats , Phosphatidylinositol 3-Kinases/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/chemically induced , Liver Neoplasms/pathology , Chenopodiaceae/chemistry , Diethylnitrosamine/toxicity , Plant Extracts/pharmacology , Liver/drug effects , Liver/pathology , Liver/metabolism
2.
Sci Rep ; 12(1): 17203, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36229515

ABSTRACT

Zinc oxide-silver (ZnO-Ag), and zinc oxide-gold (ZnO-Au) nano-composites were prepared through wet chemical process and laced into single-walled carbon nanotubes (SWCNTs) to yield ZnO-Ag-SWCNTs, and ZnO-Au-SWCNTs hybrids. These nano-composite-laced SWCNTs hybrids were characterized using Raman spectroscopic, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses. The hybrids were evaluated for their effects on phagocytic cells and bactericidal activity against the gram-negative bacteria E. coli. Their phagocytic cell activities and intracellular killing actions were found to be significantly increased, as the ZnO-Ag-SWCNTs and ZnO-Au-SWCNTs nano-hybrids induced widespread clearance of Escherichia coli. An increase in the production of reactive oxygen species (ROS) also led to upregulated phagocytosis, which was determined mechanistically to involve the phagocyte NADPH oxidase (NOX2) pathway. The findings emphasized the roles of ZnO-Ag- and ZnO-Au-decorated SWCNTs in the prevention of bacterial infection by inhibiting biofilm formation, showing the potential to be utilized as catheter coatings in the clinic.


Subject(s)
Nanotubes, Carbon , Zinc Oxide , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/metabolism , Gold/pharmacology , Microbial Sensitivity Tests , NADPH Oxidases , Nanotubes, Carbon/chemistry , Oxidoreductases , Phagocytes/metabolism , Reactive Oxygen Species/metabolism , Silver/chemistry , Silver/pharmacology , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
3.
Bioinorg Chem Appl ; 2022: 6181448, 2022.
Article in English | MEDLINE | ID: mdl-36248627

ABSTRACT

Tumor necrosis factor (TNF-α) and inflammatory cytokine (IL-6) play a vital role in various cellular incidents such as the proliferation and death of cells during carcinogenesis. Hence, regulation of these biomarkers could be a promising tool for controlling tumor progression using nanoformulations. Silver nanoparticles-poly (vinyl pyrrolidone) (AgNPs-PVP) were prepared using the reduction of silver nitrate and stabilized with PVP. They are characterized through yield percentage, UV-VIS, FT-IR, size, charge, and morphology. The obtained AgNPs were tested for anticancer activity against prostate cancer (PC 3) and human skin fibroblast (HFS) cell lines. Moreover, biomarker-based confirmations like TNF-α and IL-6 were estimated. The synthesized AgNPs-PVP were stable, spherical in shape, with particle sizes of 122.33 ± 17.61 nm, a polydispersity index of 0.49 ± 0.07, and a negative surface charge of -19.23 ± 0.61 mV. In vitro cytotoxicity testing showed the AgNPs-PVP exhibited antiproliferation properties in PC3 in a dose-dependent manner. In addition, when compared to control cells, AgNPs-PVP has lower TNF-α with a significant value ( ∗ p < 0.05); the value reached 16.84 ± 0.71 pg/ml versus 20.81 ± 0.44 pg/ml, respectively. In addition, HSF cells showed a high level of reduction ( ∗∗∗ p < 0.001) in IL-6 production. This study suggested that AgNPs-PVP could be a possible therapeutic agent for human prostate cancer and anti-IL-6 in cancerous and noncancerous cells. Further studies will be performed to investigate the effect of AgNPs-PVP in different types of cancer.

4.
Molecules ; 27(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36144488

ABSTRACT

Glioblastoma multiforme (GBM) is considered to be one of the most serious version of primary malignant tumors. Temozolomide (TMZ), an anti-cancer drug, is the most common chemotherapeutic agent used for patients suffering from GBM. However, due to its inherent instability, short biological half-life, and dose-limiting characteristics, alternatives to TMZ have been sought. In this study, the TMZ-loaded PLGA nanoparticles were prepared by employing the emulsion solvent evaporation technique. The prepared TMZ-PLGA-NPs were characterized using FT-IR, zeta potential analyses, XRD pattern, particle size estimation, TEM, and FE-SEM observations. The virotherapy, being safe, selective, and effective in combating cancer, was employed, and TMZ-PLGA-NPs and oncolytic Newcastle Disease Virus (NDV) were co-administered for the purpose. An AMHA1-attenuated strain of NDV was propagated in chicken embryos, and the virus was titrated in Vero-slammed cells to determine the infective dose. The in vitro cytotoxic effects of the TMZ, NDV, and the TMZ-PLGA-NPs against the human glioblastoma cancer cell line, AMGM5, and the normal cell line of rat embryo fibroblasts (REFs) were evaluated. The synergistic effects of the nano-formulation and viral strain combined therapy was observed on the cell lines in MTT viability assays, together with the Chou-Talalay tests. The outcomes of the in vitro investigation revealed that the drug combinations of NDV and TMZ, as well as NDV and TMZ-PLGA-NPs exerted the synergistic enhancements of the antitumor activity on the AMGM5 cell lines. The effectiveness of both the mono, and combined treatments on the capability of AMGM5 cells to form colonies were also examined with crystal violet dyeing tests. The morphological features, and apoptotic reactions of the treated cells were investigated by utilizing the phase-contrast inverted microscopic examinations, and acridine orange/propidium iodide double-staining tests. Based on the current findings, the potential for the use of TMZ and NDV as part of a combination treatment of GBM is significant, and may work for patients suffering from GBM.


Subject(s)
Antineoplastic Agents , Brain Neoplasms , Glioblastoma , Nanoparticles , Oncolytic Viruses , Acridine Orange , Animals , Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Cell Line, Tumor , Chick Embryo , Emulsions/therapeutic use , Gentian Violet , Glioblastoma/drug therapy , Humans , Nanoparticles/chemistry , Newcastle disease virus , Propidium , Rats , Solvents , Spectroscopy, Fourier Transform Infrared , Temozolomide/pharmacology
5.
Nanomaterials (Basel) ; 12(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36014673

ABSTRACT

Silver nanoparticles (AgNPs) have demonstrated numerous physicochemical, biological, and functional properties suitable for biomedical applications, including antibacterial and drug carrier properties. In the present study, the antibiotic, ciprofloxacin (CIP), was loaded onto AgNPs, which were synthesized via the chemical reduction method, thereby enhancing CIP's antibacterial activity against Gram-negative (Acinetobacter baumannii and Serratia marcescens) and Gram-positive (Staphylococcus aureus) bacterial strains. Polyethylene glycol-400 (PEG) was used to prepare an AgNPs-PEG conjugate with enhanced stability and to act as the linker between CIP and AgNPs, to produce the novel nanocomposite, AgNPs-PEG-CIP. The prepared AgNPs and their conjugates were characterized by ultraviolet-visible spectrophotometry, Fourier-transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy, transmission electron microscopy, zeta potential analysis, and dynamic light scattering techniques. The inhibitory activity of AgNPs and their conjugates on the growths of pathogenic bacteria was assessed using the well-diffusion method. The results showed the enhanced antibacterial effects of AgNPs-CIP compared to CIP alone. The AgNPs-PEG-CIP nanocomposite showed excellent inhibitory effects against bacterial isolates, with its inhibition zones diameters reaching 39, 36, and 40 mm in S. aureus, A. baumannii, and S. marcescens, respectively. The minimum inhibitory concentration and minimum bactericidal concentration of fogNPs and their conjugates and their antibiofilm effects were also determined. The antioxidant potentials of AgNPs and their conjugates, tested via their 1,1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging ability, showed that the activity increased with increasing AgNPs concentration and the addition of the PEG and/or CIP. Overall, according to the results obtained in the present study, the new nanocomposite, AgNPs-PEG-CIP, showed the highest antibacterial, antibiofilm, and antioxidant activity against the pathogenic bacteria tested, compared to CIP alone. The preparation has high clinical potential for prospective use as an antibacterial agent.

6.
PLoS One ; 17(7): e0269963, 2022.
Article in English | MEDLINE | ID: mdl-35834538

ABSTRACT

Brucellosis is an endemic zoonotic disease caused by Brucella species, which are intramacrophage pathogens that make treating this disease challenging. The negative effects of the treatment regime have prompted the development of new antimicrobials against brucellosis. A new treatment modality for antibiotic-resistant microorganisms is the use of nanoparticles (NPs). In this study, we examined the antibacterial activities of silver and gold NPs (SNPs and GNPs, respectively), the resistance developed by Brucella melitensis (B. melitensis) and Brucella abortus (B. abortus) strains and the toxicity of both of these NPs in experimental rats. To test the bactericidal effects of the SNPs and GNPs, we used 22 multidrug-resistant Brucella isolates (10 B. melitensis and 12 B. abortus). The minimal inhibitory concentrations (MICs) of both types of NPs were determined utilizing the microdilution technique. To test the stability of resistance, 7 B. melitensis and 6 B. abortus isolates were passaged ten times in culture with subinhibitory concentrations of NPs and another ten times without NPs. Histopathological analysis was completed after rats were given 0.25, 0.5, 1, and 2 mg/kg NPs orally for 28 consecutive days. The MIC values (µg/ml) of the 10-nm SNPs and 20-nm GNPs against B. melitensis were 22.43 ± 2.32 and 13.56 ± 1.22, while these values were 18.77 ± 1.33 and 12.45 ± 1.59 for B. abortus, respectively. After extensive in vitro exposure, most strains showed no resistance to the 10-nm SNPs or 20-nm GNPs. The NPs and antibiotics did not cross-react in any of the evolved Brucella strains. SNPs and GNPs at doses below 2 mg/kg were not harmful to rat tissue according to organ histopathological examinations. However, a greater dose of NPs (2 mg/kg) harmed all of the tissues studied. The bactericidal properties of NPs are demonstrated in this work. Brucella strains develop similar resistance to SNPs and GNPs, and at low dosages, neither SNPs nor GNPs were hazardous to rats.


Subject(s)
Anti-Bacterial Agents , Brucella , Brucellosis , Gold , Metal Nanoparticles , Silver , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/toxicity , Brucella/drug effects , Brucella abortus/drug effects , Brucella melitensis/drug effects , Brucellosis/drug therapy , Brucellosis/epidemiology , Gold/pharmacology , Gold/therapeutic use , Gold/toxicity , Gold Compounds/pharmacology , Gold Compounds/therapeutic use , Gold Compounds/toxicity , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/toxicity , Rats , Silver/pharmacology , Silver/therapeutic use , Silver/toxicity , Silver Compounds/pharmacology , Silver Compounds/therapeutic use , Silver Compounds/toxicity
7.
Immun Inflamm Dis ; 10(8): e671, 2022 08.
Article in English | MEDLINE | ID: mdl-35894709

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) infection is considered a serious highly infectious disease caused by severe acute respiratory syndrome coronavirus 2, resulting in more than 6.27 million deaths worldwide. AIM OF THE STUDY: The study aimed to compare clinical characteristics and laboratory findings of COVID-19 patients with complications and without complications and discriminate the important risk factors for the complications and deaths. SUBJECTS AND METHODS: This cross-sectional study included 75 confirmed COVID-19 positive patients; out of which 49 were severely-ill cases. Analysis of all patients' clinical and laboratory information on admission including serum ferritin, thrombotic activity (d-dimer), lactate dehydrogenase (LDH), C-reactive protein (CRP), creatinine, aspartate aminotransferase, and alanine aminotransferase were done. RESULTS: Lymphopenia, tachycardia, tachypnea, elevated CRP, d-dimer, serum ferritin, LDH, and decreased SpO2 were significantly associated with complicated cases (p < .05 for all). By using multivariate logistic regression analysis models, elevated serum ferritin and tachycardia were significantly correlated with the increased odds of complicated COVID-19 cases (odds ratio [confidence interval 95%] = 10.42 [2.32-46.89] and 8.01 [1.17-55.99]; respectively) (p = .002 and .007, respectively). CONCLUSION: Lymphocytopenia, d-dimer, LDH, and CRP levels, which were significantly linked to the severity of COVID-19, were the prognostic biomarkers to predict the disease severity.


Subject(s)
COVID-19 , Lymphopenia , Cross-Sectional Studies , Egypt/epidemiology , Ferritins , Humans , L-Lactate Dehydrogenase , SARS-CoV-2
8.
Int J Nanomedicine ; 17: 1951-1970, 2022.
Article in English | MEDLINE | ID: mdl-35530976

ABSTRACT

Despite the massive advancements in the nanomedicines and their associated research, their translation into clinically-applicable products is still below promises. The latter fact necessitates an in-depth evaluation of the current nanomedicines from a clinical perspective to cope with the challenges hampering their clinical potential. Quantum dots (QDs) are semiconductors-based nanomaterials with numerous biomedical applications such as drug delivery, live imaging, and medical diagnosis, in addition to other applications beyond medicine such as in solar cells. Nevertheless, the power of QDs is still underestimated in clinics. In the current article, we review the status of QDs in literature, their preparation, characterization, and biomedical applications. In addition, the market status and the ongoing clinical trials recruiting QDs are highlighted, with a special focus on the challenges limiting the clinical translation of QDs. Moreover, QDs are technically compared to other commercially-available substitutes. Eventually, we inspire the technical aspects that should be considered to improve the clinical fate of QDs.


Subject(s)
Nanostructures , Quantum Dots , Drug Delivery Systems/methods , Nanomedicine , Semiconductors
9.
Exp Ther Med ; 23(6): 403, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35637648

ABSTRACT

The present study assessed serum miR-15b, Annexin A1, procalcitonin, and interleukin-6 (IL-6) levels in children with metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO) and compared them to these levels in a non-obese healthy control group. It also tested the ability of each of these parameters to early differentiate children with MUO from those with MHO. The present study included 620 children [434 males (70%) and 186 females (30%); aged 9-15 years] divided into the following groups: G1, healthy non-obese controls (n=200); G2, MHO (n=246); G3, MUO (n=174). Serum miR-15b, Annexin A1 procalcitonin, IL-6, and other metabolic parameters levels were measured, and clinical examinations were conducted for all of the children. After testing the normality of the variable, Kruskal-Wallis one-way-ANOVA, and Spearman correlation coefficients were used. The area under the receiver operating characteristic curve (AUC) was determined to test the variable's ability to differentiate MUO from MHO. miR-15b, procalcitonin, and IL-6 levels were significantly higher while Annexin A1 levels were significantly lower in G2 and G3 when compared to G1, and in G3 when compared to G2. These levels were positively correlated (Annexin A1 was negatively correlated) with body mass index (BMI) and waist circumference percentiles, and with serum levels of LDL-cholesterol, glucose, HbA1c, insulin, and C-reactive protein (CRP) and with the homeostasis model of insulin resistance (HOMA-IR). The AUC was 0.92, 0.84, 0.82, and 0.67 for miR-15b, Annexin A1, procalcitonin, and IL-6, respectively. In conclusion, determination of serum miR-15b, Annexin A1, and procalcitonin levels could differentiate children with MUO from those with MHO. This may help the early management of these cases and their accompanying complications.

10.
J Drug Target ; 30(8): 884-893, 2022 09.
Article in English | MEDLINE | ID: mdl-35418263

ABSTRACT

Alpha-Galactosylceramide (α-GalCer) effectively activates the natural killer T (NKT) cells to secrete remarkable amounts of Th1 and Th2 cytokines and therefore, acts as a potential immunoadjuvant in vaccine formulation. In the present study, we prepared α-GalCer-bearing or α-GalCer-free liposomes and loaded them with Middle East Respiratory Syndrome Coronavirus papain-like protease (α-GalCer-Lip-MERS-CoV PLpro or Lip-MERS-CoV PLpro). These formulations were injected in mice to investigate the antigen-specific humoral and cell-mediated immune responses. The immunisation with α-GalCer-Lip-MERS-CoV PLpro or Lip-MERS-CoV PLpro did not induce any notable toxicity in immunised mice. The results demonstrated that mice immunised with α-GalCer-Lip-MERS-CoV PLpro showed greater antigen-specific antibody titre, switching of IgG isotyping to IgG2a subclass and higher lymphocyte proliferation. Moreover, the splenocytes from α-GalCer-Lip-MERS-CoV PLpro immunised mice secreted greater levels of IFN-γ, IL-4, IL-2 and IL-12. Interestingly, a booster dose induced stronger memory immune responses in mice previously immunised with α-GalCer-Lip-MERS-CoV PLpro. In summary, α-GalCer-Lip-MERS-CoV PLpro may prove to be a promising vaccine formulation to protect the individuals against MERS-CoV infection.


Subject(s)
Liposomes , Middle East Respiratory Syndrome Coronavirus , Animals , Galactosylceramides , Immunity , Mice
12.
Article in English | MEDLINE | ID: mdl-35341158

ABSTRACT

Patients treated with cyclophosphamide (CP) usually suffer from severe hemorrhagic cystitis (HC). Our previous study exhibited that mesna + celery cotherapy partially ameliorated HC. Therefore, there is a substantial need to seek alternative regimens to get complete protection against CP-induced HC. The current study investigated the effects of mesna + celery seed oil (MCSO) or mesna + manuka honey (MMH) cotherapy against CP-induced HC in adult male rabbits. The forty rabbits were divided into four equal groups and treated for three weeks. The control group (G1) received distilled water and the second group (G2) received CP (50 mg/kg/week). The third group (G3) received CP + MCSO (CPMCSO regimen), and the fourth group (G4) received CP + MMH (CPMMH regimen). The urinary bladder (UB) specimens were processed to evaluate UB changes through histopathological, immunohistochemical, ultrastructural, and biochemical investigations. In G2, CP provoked HC features (urothelial necrosis, ulceration, and sloughing), UB fibrosis, and TNF-α immunoexpression. Besides, CP reduced the activity of antioxidant enzymes (GPx1, SOD3, and CAT) and elevated the serum levels of NF-κB, TNF-α, IL-1B, and IL-6 cytokines in G2 rabbits. In contrast, the CPMMH regimen caused significant increments of UB protection against HC in G4 rabbits compared to the partial protection by the CPMCSO regimen in G3. Therefore, our study indicated for the first time that the novel CPMMH regimen resulted in complete UB protection against CP-induced HC via combined antioxidant, anti-inflammatory, and antifibrotic properties.

13.
Pharmaceutics ; 14(3)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35336035

ABSTRACT

The treatment of breast cancer requires long chemotherapy management, which is accompanied by severe side effects. Localized delivery of anticancer drugs helps to increase the drug concentration at the site of action and overcome such a problem. In the present study, chitosan hydrogel was prepared for local delivery of 5-Fluorouracil. The in vitro release behavior was investigated and the anticancer activity was evaluated against MCF-7 cells using MTT assay. The in vivo studies were investigated via intra-tumoral injection of a 5-FU loaded hydrogel into breast cancer of female rats. The results indicated that the modified hydrogel has excellent physicochemical properties with a sustained in vitro release profile matching a zero-order kinetic for one month. In addition, the hydrogel showed superior inhibition of cell viability compared with the untreated control group. Moreover, the in vivo studies resulted in antitumor activity with minor side effects. The tumor volume and level of tumor markers in blood were inhibited significantly by applying the hydrogel compared with the untreated control group. In conclusion, the designed injectable hydrogels are potential drug delivery systems for the treatment of breast cancer with a controlled drug release profile, which could be suitable for decreasing the side effects of chemotherapy agents.

14.
Life Sci ; 295: 120403, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35176277

ABSTRACT

Cetuximab (CTX) is known to have cytotoxic effects on several human cancer cells in vitro; however, as CTX is poorly water soluble, there is a need for improved formulations can reach cancer cells at high concentrations with low side effects. We developed (PEG-4000) polymeric nanoparticles (PEGNPs) loaded with CTX and evaluated their in vitro cytotoxicity and anticancer properties against human lung (A549) and breast (MCF-7) cancer cells. CTX-PEGNPs were formulated using the solvent evaporation technique, and their morphological properties were evaluated. Further, the effects of CTX-PEGNPs on cell viability using the MTT assay and perform gene expression analysis, DNA fragmentation measurements, and the comet assay. CTX-PEGNP showed uniformly dispersed NPs of nano-size range (253.7 ± 0.3 nm), and low polydispersity index (0.16) indicating the stability and uniformity of NPs. Further, the zeta potential of the preparations was -17.0 ± 1.8 mv. DSC and FTIR confirmed the entrapping of CTX in NPs. The results showed IC50 values of 2.26 µg/mL and 1.83 µg/mL for free CTX and CTX-PEGNPs on the A549 cancer cell line, respectively. Moreover, CTX-PEGNPs had a lower IC50 of 1.12 µg/mL in MCF-7 cells than that of free CTX (2.28 µg/mL). The expression levels of p21 and stathmin-1 were significantly decreased in both cell lines treated with CTX-PEGNPs compared to CTX alone. The CTX-PEGNP-treated cells also showed increased DNA fragmentation rates in both cancer cell lines compared with CTX alone. The results indicated that CTX-PEGNP was an improved formulation than CTX alone to induce apoptosis and DNA damage and inhibit cell proliferation through the downregulation of P21 and stathmin-1 expression.


Subject(s)
Cetuximab/pharmacology , Drug Delivery Systems/methods , Polyethylene Glycols/pharmacology , A549 Cells , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cetuximab/administration & dosage , Cyclin-Dependent Kinase Inhibitor p21/drug effects , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Drug Carriers/pharmacology , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , MCF-7 Cells , Nanoparticles/chemistry , Polymers , Stathmin/drug effects , Stathmin/metabolism
15.
PLoS One ; 17(1): e0262551, 2022.
Article in English | MEDLINE | ID: mdl-35025975

ABSTRACT

Brucellae are intracellular sneaky bacteria and they can elude the host's defensive mechanisms, resulting in therapeutic failure. Therefore, the goal of this investigation was to rapid identification of Brucella species collected from animals and humans in Saudi Arabia, as well as to evaluate their resistance to antibiotics. On selective media, 364 animal samples as well as 70 human blood samples were cultured. Serological and biochemical approaches were initially used to identify a total of 25 probable cultured isolates. The proteomics of Brucella species were identified using the MALDI Biotyper (MBT) system, which was subsequently verified using real-time polymerase chain reaction (real-time PCR) and microfluidic electrophoresis assays. Both Brucella melitensis (B. melitensis) and Brucella abortus (B. abortus) were tested for antimicrobial susceptibility using Kirby Bauer method and the E-test. In total, 25 samples were positive for Brucella and included 11 B. melitensis and 14 B. abortus isolates. Twenty-two out of 25 (88%) and 24/25 (96%) of Brucella strains were recognized through the Vitek 2 Compact system. While MBT was magnificently identified 100% of the strains at the species level with a score value more than or equal to 2.00. Trimethoprim-sulfamethoxazole, rifampin, ampicillin-sulbactam, and ampicillin resistance in B. melitensis was 36.36%, 31.82%, 27.27%, and 22.70%, respectively. Rifampin, trimethoprim-sulfamethoxazole, ampicillin, and ampicillin-sulbactam resistance was found in 35.71%, 32.14%, 32.14%, and 28.57% of B. abortus isolates, correspondingly. MBT confirmed by microfluidic electrophoresis is a successful approach for identifying Brucella species at the species level. The resistance of B. melitensis and B. abortus to various antibiotics should be investigated in future studies.


Subject(s)
Brucella/genetics , Brucellosis/diagnosis , Drug Resistance, Microbial/genetics , Animals , Anti-Bacterial Agents/pharmacology , Brucella/isolation & purification , Brucella/pathogenicity , Brucellosis/drug therapy , Brucellosis/microbiology , Cattle , DNA, Bacterial , Drug Evaluation, Preclinical/methods , Drug Resistance, Microbial/drug effects , Genotype , Goats , Humans , Infection Control , Proteomics/methods , Real-Time Polymerase Chain Reaction/methods , Saudi Arabia
16.
Cutan Ocul Toxicol ; 41(1): 33-42, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34749565

ABSTRACT

INTRODUCTION: Psoriasis is a chronic multifactorial inflammatory disease that affects 3% of people worldwide. Ustekinumab is a selective anti-IL-12/23 biologic that alleviates psoriasis, and curcumin is a natural, effective dietary turmeric extract applied to treat numerous diseases through its antioxidant and anti-inflammatory effects. OBJECTIVE: The current study evaluated the therapeutic effects of curcumin and ustekinumab cotherapy (CUC) on imiquimod (IQ)-induced psoriasis in a rat model. MATERIALS AND METHODS: Twenty rats were divided into four groups, G1 (control group), G2 (IQ-treated group), G3 (IQ + ustekinumab), and G4 (IQ + CUC). Clinical, histopathological (HP), immunohistochemical (IHC), antioxidant, and biochemical investigations evaluated the efficacy of these drugs for treating IQ induced-psoriasis. RESULTS: Rats of G2 exhibited clinical signs of psoriatic skin lesions (erythema, scaling, and skin thickening) with epidermal changes (acanthosis and parakeratosis). Additionally, the biochemical analysis revealed significant (p < 0.05) reductions in the levels of antioxidant biomarkers (SOD, GPx, and CAT) with significant (p < 0.05) elevations in psoriasis-related cytokines (TNF-α, IL-17A, IL-12P40, and IL-23). In contrast, CUC alleviated the psoriatic changes in G4 better than ustekinumab monotherapy in G3. CONCLUSIONS: Ustekinumab inhibits the inflammatory cytokines IL-12P40 and IL-23, while curcumin has antioxidant effects (increasing SOD, GPx, and CAT levels) with anti-inflammatory effects (decreasing the proinflammatory cytokine TNF-α and IL-17). Therefore, CUC could be an excellent cost-effective regimen that can improve the treatment of psoriasis by the synergistic effects of CUC.HighlightsIQ-induces psoriasis by elevating TNF-α, IL-17A, IL-12, and IL-23 and decreasing GPx, SOD, and CATUstekinumab exhibits anti-inflammatory effects by inhibiting IL-12 and IL-23Curcumin inhibits TNF-α and IL-17A, and increases GPx, SOD, and CAT levelsCUC mitigates psoriasis by synergistic antioxidant and anti-inflammatory effectsCUC inhibits TNF-α, IL-17A, IL-12, and IL-23 and increases GPx, SOD, and CAT levels.


Subject(s)
Curcumin , Psoriasis , Ustekinumab , Animals , Anti-Inflammatory Agents/therapeutic use , Antioxidants/metabolism , Curcumin/therapeutic use , Cytokines/metabolism , Disease Models, Animal , Imiquimod , Interleukin-12 Subunit p40/metabolism , Interleukin-17/metabolism , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/pathology , Rats , Skin , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ustekinumab/therapeutic use
17.
J Inflamm Res ; 14: 6305-6316, 2021.
Article in English | MEDLINE | ID: mdl-34866928

ABSTRACT

BACKGROUND: Trastuzumab is a new biological drug that has been used to treat breast and gastric cancer; however, its cardiotoxicity and hepatotoxicity limit its use. Garlic has antioxidant, anti-inflammatory, antihyperlipidemic, and anticancer effects. The present study aimed to evaluate the effects of garlic on trastuzumab-induced hepatotoxicity in a rat model. METHODS: Twenty rats were divided into four equal groups as vehicle control (G1), garlic (G2), trastuzumab (G3), and trastuzumab+garlic (G4). All rats were sacrificed after eight weeks of treatment, followed by blood collection and excision of liver tissues for further analyses. The liver specimens were processed for histopathological (HP), immunohistochemical (expression of TNF-α and PCNA), immunofluorescent expression of Chk2 and p53, biochemical, and flow cytometry investigations to evaluate the extent of hepatocyte injury. The biochemical analysis was conducted for the activity of tissue antioxidants (GPX1, CAT, and SOD2), serum lipid profile, and liver enzymes, whereas ROS was performed by flow cytometry. RESULTS: The results revealed remarkable structural changes in hepatocytes of G3 with significant increases in the numbers of inflammatory cells and positive PCNA cells, area % of collagen fibers, and immuno-expression of TNF-α, as well as a significant reduction in the nuclear expression of Chk2. In addition, significant reductions were noticed in the antioxidant enzymes (SOD2, CAT, and GPX1) activity of G3. In contrast, the levels of lipid profile tests (triglycerides, total cholesterol, LDLC, and HDLC), liver enzymes (ALT, AST, and ALP), and ROS revealed significant increases in rats of G3. Likewise, garlic administration in G4 restored all mentioned changes to their average levels deviated by trastuzumab. CONCLUSION: Based on the current results, garlic demonstrates hepatoprotective effects against trastuzumab-induced toxicity in rats. The study suggested for the first time that the coadministration of garlic with trastuzumab for treating breast or gastric cancer can augment their efficacy with minimal toxicity.

18.
J Inflamm Res ; 14: 5837-5847, 2021.
Article in English | MEDLINE | ID: mdl-34795496

ABSTRACT

BACKGROUND: Ifosfamide (IFS) has potential complications such as nephropathy and hemorrhagic cystitis (HC). Although mesna can prevent IFS-induced cystitis by direct binding and neutralization of acrolein, HC symptoms have still been observed clinically in most of these cases. Celery is a powerful healing vegetable that has antioxidant, anti-inflammatory, and anticancer effects. The current study evaluated the synergistic effects of mesna and celery seed on IFS-induced HC in rabbits. METHODS: Twenty male rabbits (four groups) were administered distilled water, IFS, mesna, and mesna+celery seed cotherapy (MCC) for three weeks. The serum and urinary bladder of experimental rabbits underwent biochemical (TNF-α, MDA, iNOS, SOD, GPx, and CAT), histopathological and ultrastructural investigations to evaluate the structural changes of the urinary bladder (UB). RESULTS: IFS injection resulted in severe cystitis with a remarkable increase in the scale of hematuria, elevations of TNF-α, MDA, and iNOS activity, and reduced activity of SOD, GPx, and CAT antioxidants. Additionally, the structure of UB exhibited evident mucosal edema and ulceration. In contrast, the MCC regimen group revealed partial synergistic improvement of all mentioned parameters. CONCLUSION: IFS induced cystitis by releasing acrolein, which exerted a significant role in the pathogenesis of HC. In contrast, the MCC intake partially ameliorated the UB damage through its antioxidant and anti-inflammatory effects.

19.
Plants (Basel) ; 10(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34579344

ABSTRACT

Pulicaria undulata (L.) C. A. Mey has multiple uses as part of the traditional medicament, and several biological activities of the plant have been corroborated in the scientific literature. The current work evaluates the phytochemical constituents and biological properties of the water-ethanol extract of the P. undulata growing in Qassim, the central arid regions of the Kingdom of Saudi Arabia. Qualitative UPLC-ESIQ-TOF analysis identified 27 compounds belonging to the phenolics, flavonoids, triterpenes, coumarins, and of fatty acids chemical classes. The quantitative analysis exhibited 33.3 mg/g GAE (Gallic Acid Equivalents), and 10.8 mg/g QE (Quercetin Equivalents) of the phenolics and flavonoids in the plant's concentrated (to dryness) water-ethanol extract. The trace elements analysis of the plant's dry powder established the presence of copper (20.13 µg/kg), and zinc (68.2 µg/kg) in the higher levels of occurrences. In terms of the antioxidant potential of the plant's extract, the ferric-reducing, and free-radicals scavenging activities were recorded at 47.11 mg/g, and 19.13 mg/g equivalents of the concentrated to dryness water-ethanol extract of the plant. The water-ethanol extract of P. undulata also exhibited antimicrobial activity against the tested Gram-positive bacteria, while no activity was observed against the tested Gram-negative bacteria, or the fungi. The MIC (minimum inhibitory concentration) values were in the range of 49 to 1563 µg/mL, whereas the MBC (minimum bactericidal concentration) values ranged from 49 to 3125 µg/mL, against the tested Gram-positive bacteria. The P. undulata water-ethanol extract also exhibited potent cytotoxic effects with the IC50 value at 519.2 µg/mL against the MCF-7 breast cancer cell-lines, followed by the anticancer activity of erythroleukemic cell-lines, K562 at 1212 µg/mL, and pancreatic cell-lines, PANC-1, at 1535 µg/mL, as compared to the normal fibroblast cells (4048 µg/mL). The Annexin-V assay demonstrated that, as the P. undulata extract's dose increased from IC50 to twice of the IC50, the percentage of the necrosis was found to be increased in the late apoptosis stage of the cancer cells. These data confirmed the P. undulata extract's ability to inhibit several human cancer cell lines' growth in comparison to other local halophytes. The antimicrobial activity of the plant was also confirmed.

20.
BMC Endocr Disord ; 21(1): 152, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34344352

ABSTRACT

AIM: The present work investigated serum levels of miR-29a, miR-122 and sestrin2 in obese children with/without type-2-diabetes mellitus (T2DM), and their correlations with inflammatory, metabolic and anthropometric parameters. METHODS: The study included 298 children, divided into: G1 (control, n = 136), G2 (obese without diabetes, n = 90) and G3 (obese with T2DM, n = 72). Metabolic and anthropometric parameters, miR-29a, miR-122 relative expressions, and sestrin2, high sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels were measured by their specific methods. The data was processed and analyzed by SPSS V.26 using the corresponding tests. After testing the variables' normality, Kruskal-Wallis one-way-ANOVA, Spearman correlations coefficient were used. RESULTS: Significant higher serum miR-29a, miR-122, IL-6, hsCRP and TNF-α and lower sestrin2 levels were found in G2 and G3 than G1 and in G3 than G2 (p= > 0.001 for all). Especially in G3, miR-29a and miR-122 levels correlated positively while sestrin2 levels correlated negatively with waist circumference and BMI percentiles, serum levels of LDL-cholesterol, triacylglycerol, total cholesterol, HbA1c%, glucose, insulin, c-peptide, homeostatic model assessment-insulin resistance (HOMA-IR), IL-6, hsCRP and TNF-α. CONCLUSION: The change in the serum miR-29a, miR-122 and sestrin2 levels in obese children with/without T2DM may suggest a possible role of these biomarkers in the pathogenesis of childhood obesity and their accompanied complications e.g. inflammations and T2DM. Also, further studies are required to test drugs that antagonize the action miR-29a and miR-122 or upregulate sestrin2 in the management of these cases.


Subject(s)
Biomarkers/blood , Diabetes Mellitus, Type 2/diagnosis , Inflammation Mediators/blood , MicroRNAs/blood , Nuclear Proteins/blood , Pediatric Obesity/complications , Blood Glucose/analysis , Body Mass Index , Case-Control Studies , Child , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/pathology , Female , Follow-Up Studies , Humans , Insulin Resistance , Male , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...