Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci Res ; 102(4): e25321, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38588013

ABSTRACT

Neurodegenerative diseases are progressive disorders characterized by synaptic loss and neuronal death. Optogenetics combines optical and genetic methods to control the activity of specific cell types. The efficacy of this approach in neurodegenerative diseases has been investigated in many reviews, however, none of them tackled it systematically. Our study aimed to review systematically the findings of optogenetics and its potential applications in animal models of chronic neurodegenerative diseases and compare it with deep brain stimulation and designer receptors exclusively activated by designer drugs techniques. The search strategy was performed based on the PRISMA guidelines and the risk of bias was assessed following the Systematic Review Centre for Laboratory Animal Experimentation tool. A total of 247 articles were found, of which 53 were suitable for the qualitative analysis. Our data revealed that optogenetic manipulation of distinct neurons in the brain is efficient in rescuing memory impairment, alleviating neuroinflammation, and reducing plaque pathology in Alzheimer's disease. Similarly, this technique shows an advanced understanding of the contribution of various neurons involved in the basal ganglia pathways with Parkinson's disease motor symptoms and pathology. However, the optogenetic application using animal models of Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis was limited. Optogenetics is a promising technique that enhanced our knowledge in the research of neurodegenerative diseases and addressed potential therapeutic solutions for managing these diseases' symptoms and delaying their progression. Nevertheless, advanced investigations should be considered to improve optogenetic tools' efficacy and safety to pave the way for their translatability to the clinic.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Animals , Optogenetics/methods , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/drug therapy , Brain/physiology , Basal Ganglia , Parkinson Disease/genetics
2.
J Neurosci Res ; 101(8): 1360-1379, 2023 08.
Article in English | MEDLINE | ID: mdl-37186320

ABSTRACT

Neuroinflammation is a reaction of nervous tissue to an attack caused by an infection, a toxin, or a neurodegenerative disease. It involves brain metabolism adaptation in order to meet the increased energy needs of glial cell activation, but the nature of these adaptations is still unknown. Increasing interest concerning neuroinflammation leads to the identification of its role in neurodegenerative diseases. Few reports studied the effect of metabolic alteration on neuroinflammation. Metabolic damage initiates a pro-inflammatory response by microglial activation. Moreover, the exact neuroinflammation effect on cerebral cell metabolism remains unknown. In this study, we reviewed systematically the neuroinflammation effect in animal models' brains. All articles showing the relationship of neuroinflammation with brain metabolism, or with neuronal stimulation in neurodegenerative diseases were considered. Moreover, this review examines also the mitochondrial damage effect in neurodegeneration diseases. Then, different biosensors are classified regarding their importance in the determination of metabolite change. Finally, some therapeutic drugs inhibiting neuroinflammation are cited. Neuroinflammation increases lymphocyte infiltration and cytokines' overproduction, altering cellular energy homeostasis. This review demonstrates the importance of neuroinflammation as a mediator of disease progression. Further, the spread of depolarization effects pro-inflammatory genes expression and microglial activation, which contribute to the degeneration of neurons, paving the road to better management and treatment of neurodegenerative diseases.


Subject(s)
Encephalitis , Neurodegenerative Diseases , Animals , Neurodegenerative Diseases/metabolism , Neuroinflammatory Diseases , Brain/metabolism , Encephalitis/metabolism , Neurons/metabolism , Microglia/metabolism , Inflammation/metabolism
3.
Cancers (Basel) ; 13(14)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34298734

ABSTRACT

Cognitive side effects after cancer treatment threatening quality of life (QoL) constitute a major challenge in oncology. Abiraterone acetate plus prednisone (AAP) and enzalutamide (ENZ) are examples of next-generation therapy (NGT) administered to metastatic castration-resistant prostate cancer (mCRPC) patients. NGT significantly improved mCRPC overall survival but neurological side effects such as fatigue and cognitive impairment were reported. We developed a behavioral 17 months-aged and castrated mouse model receiving per os AAP or ENZ for 5 days per week for six consecutive weeks. ENZ exposure reduced spontaneous activity and exploratory behavior associated with a decreased tyrosine hydroxylase (TH)-dopaminergic activity in the substantia nigra pars compacta and the ventral tegmental area. A decrease in TH+-DA afferent fibers and Phospho-DARPP32-related dopaminergic neuronal activities in the striatum and the ventral hippocampus highlighted ENZ-induced dopaminergic regulation within the nigrostriatal and mesolimbocortical pathways. ENZ and AAP treatments did not substantially modify spatial learning and memory performances, but ENZ led to a thygmotaxis behavior impacting the cognitive score, and reduced c-fos-related activity of NeuN+-neurons in the dorsal hippocampus. The consequences of the mCRPC treatment ENZ on aged castrated mouse motivation to exploration and cognition should make reconsider management strategy of elderly prostate cancer patients.

4.
Transl Psychiatry ; 9(1): 124, 2019 03 28.
Article in English | MEDLINE | ID: mdl-30923308

ABSTRACT

Infections during gestation and the consequent maternal immune activation (MIA) increase the risk of developing neuropsychiatric disorders in infants and throughout life, including autism spectrum disorders (ASD). ASD is a neurodevelopmental disorder that affects three times more males than females and is mainly characterized by deficits in social communication and restricted interests. Consistent findings also indicate that ASD patients suffer from movement disorders, although these symptoms are not yet considered as diagnosis criteria. Here we used the double-stranded RNA analog polyinosinic:polycytidylic acid (poly I:C) MIA animal model of ASD in mice and explored its effects in males and females on social and motor behavior. We then investigated brain areas implicated in controlling and coordinating movements, namely the nigro-striatal pathway, motor cortex and cerebellum. We show that male mice are more affected by this treatment than females as they show reduced social interactions as well as motor development and coordination deficits. Reduced numbers of Purkinje cells in the cerebellum was found more widespread and within distinct lobules in males than in females. Moreover, a reduced number of neurons was found in the motor cortex of males only. These results suggest that females are better protected against developmental insults leading to ASD symptoms in mice. They also point to brain areas that may be targeted to better manage social and motor consequences of ASD.


Subject(s)
Autism Spectrum Disorder/immunology , Behavior, Animal , Brain/pathology , Neurons/pathology , Sex Factors , Animals , Autism Spectrum Disorder/chemically induced , Disease Models, Animal , Female , Male , Mice , Poly I-C/pharmacology , Pregnancy
5.
Int J Neuropsychopharmacol ; 21(9): 871-882, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29762671

ABSTRACT

Background: Motor impairments are amongst the earliest and most consistent signs of autism spectrum disorders but are not used as diagnostic criteria. In addition, the relationship between motor and cognitive impairments and their respective neural substrates remain unknown. Methods: Here, we aimed at determining whether a well-acknowledged animal model of autism spectrum disorders, the valproic acid model, displays motor impairments and whether they may correlate with social deficits and neuronal loss within motor brain areas. For this, pregnant female mice (C57BL/6J) received valproic acid (450 mg/kg) at embryonic day 12.5 and offspring underwent a battery of behavioral analyses before being killed for histological correlates in motor cortex, nigrostriatal pathway, and cerebellum. Results: We show that while valproic acid male mice show both social and motor impairments, female mice only show motor impairments. Prenatal valproic acid exposure induces specific cell loss within the motor cortex and cerebellum and that is of higher magnitude in males than in females. Finally, we demonstrate that motor dysfunction correlates with reduced social behavior and that motor and social deficits both correlate with a loss of Purkinje cells within the Crus I cerebellar area. Conclusions: Our results suggest that motor dysfunction could contribute to social and communication deficits in autism spectrum disorders and that motor and social deficits may share common neuronal substrates in the cerebellum. A systematic assessment of motor function in autism spectrum disorders may potentially help the quantitative diagnosis of autism spectrum disorders and strategies aimed at improving motor behavior may provide a global therapeutic benefit.


Subject(s)
Autism Spectrum Disorder/pathology , Autism Spectrum Disorder/psychology , Brain/pathology , Neurons/pathology , Social Behavior , Animals , Disease Models, Animal , Female , Gait , Male , Mice, Inbred C57BL , Motor Skills , Movement Disorders/pathology , Movement Disorders/psychology , Pregnancy , Prenatal Exposure Delayed Effects , Random Allocation , Sex Factors , Valproic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...