Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Oncol ; 14: 1321557, 2024.
Article in English | MEDLINE | ID: mdl-38751811

ABSTRACT

Goserelin is an effective anticancer drug, but naturally causes several side effects. Hence the determination of this drug in biological samples, plays a key role in evaluating its effects and side effects. The current studies have concentrated on monitoring Goserelin using an easy and quick DNA biosensor for the first time. In this study, copper(II) oxide nanoparticles were created upon the surface of multiwalled carbon nanotubes (CuO/MWCNTs) as a conducting mediator. The modified pencil graphite electrode (ds-DNA/PA/CuO/MWCNTs/PGE) has been modified with the help of polyaniline (PA), ds-DNA, and CuO/MWCNTs nanocomposite. Additionally, the issue with the bio-electroanalytical guanine oxidation signal in relation to ds-DNA at the surface of PA/CuO/MWCNTs/PGE has been examined to determination Goserelin for the first time. It also, established a strong conductive condition to determination Goserelin in nanomolar concentration. Thus, Goserelin's determining, however, has a 0.21 nM detection limit and a 1.0 nM-110.0 µM linear dynamic range according to differential pulse voltammograms (DPV) of ds-DNA/PA/CuO/MWCNTs/PGE. Furthermore, the molecular docking investigation highlighted that Goserelin is able to bind ds-DNA preferentially and supported the findings of the experiments. The determining of Goserelin in real samples has been effectively accomplished in the last phase using ds-DNA/PA/CuO/MWCNTs/PGE.

2.
Micron ; 179: 103595, 2024 04.
Article in English | MEDLINE | ID: mdl-38341939

ABSTRACT

The primary objective of this review is to present a comprehensive examination of the synthesis, characterization, and antibacterial applications of covalent organic frameworks (COFs). COFs represent a distinct category of porous materials characterized by a blend of advantageous features, including customizable pore dimensions, substantial surface area, and adaptable chemical properties. These attributes position COFs as promising contenders for various applications, notably in the realm of antibacterial activity. COFs exhibit considerable potential in the domain of antibacterial applications, owing to their amenability to functionalization with antibacterial agents. The scientific community is actively exploring COFs that have been imbued with metal ions, such as copper or silver, given their observed robust antibacterial properties. These investigations strongly suggest that COFs could be harnessed effectively as potent antibacterial agents across a diverse array of applications. Finally, COFs hold immense promise as a novel class of materials for antibacterial applications, shedding light on the synthesis, characterization, and functionalization of COFs tailored for specific purposes. The potential of COFs as effective antibacterial agents beckons further exploration and underscores their potential to revolutionize antibacterial strategies in various domains.


Subject(s)
Metal-Organic Frameworks , Metal-Organic Frameworks/pharmacology , Anti-Bacterial Agents/pharmacology , Silver/pharmacology , Copper/pharmacology , Porosity
3.
Chem Biodivers ; 21(4): e202301777, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373183

ABSTRACT

Lawsone, a naturally occurring compound found in henna, has been used in traditional medicine for centuries due to its diverse biological activities. In recent years, its nanoparticle-based structure has gained attention in cancer and infectious disease research. This review explores the therapeutic potential of lawsone and its nanoparticles in the context of cancer and infectious diseases. Lawsone exhibits promising anticancer properties by inducing apoptosis and inhibiting cell proliferation, while its nanoparticle formulations enhance targeted delivery and efficacy. Moreover, lawsone demonstrates significant antimicrobial effects against various pathogens. The unique physicochemical properties of lawsone nanoparticles enable efficient cellular uptake and targeted delivery. Potential applications in combination therapy and personalized medicine open new avenues for cancer and infectious disease treatment. While clinical trials are needed to validate their safety and efficacy, lawsone-based nanoparticles offer hope in addressing unmet medical needs and revolutionizing therapeutic approaches.


Subject(s)
Communicable Diseases , Naphthoquinones , Neoplasms , Humans , Neoplasms/drug therapy , Naphthoquinones/chemistry , Disease Management
4.
Int Wound J ; 21(1): e14358, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37654247

ABSTRACT

This systematic review and meta-analysis aimed to evaluate the relationship between body mass index (BMI) and mortality of burn patients. A comprehensive, systematic search was conducted in different international electronic databases, such as Scopus, PubMed, Web of Science and Persian electronic databases such as Iranmedex, and Scientific Information Database (SID) using keywords extracted from Medical Subject Headings such as "Body mass index", "Burns" and "Mortality" from the earliest to the April 1, 2023. The quality of the studies included in this systematic review was evaluated using the appraisal tool for cross-sectional studies (AXIS tool). Finally, six articles were included in this systematic review and meta-analysis. A total of 16 154 burn patients participated in six studies. Their mean age was 46.32 (SD = 1.99). Of the participants, 71.7% were males. The mean length of hospitalization was 18.80 (SD = 8.08) days, and the average TBSA in burn patients was 38.32 (SD = 2.79) %. Also, the average BMI in burn patients was 27.10 (SD = 1.75). Results found mortality in patients with abnormal BMI (overweight to morbidity BMI) was 0.19 more than normal BMI (ES: 1.19, 95%CI: 0.76-1.87, Z = 0.75, I2 : 71.8%, p = 0.45). Results of linear dose-response showed each 5 kg/m2 increase in BMI was associated with a 5% increase in mortality that was marginally significant (ES: 1.05, 95%CI: 1.00-1.11, Z = 1.99, I2 : 22.2%, p = 0.047). There was a non-linear relationship between levels of BMI and mortality (Prob > χ2 = 0.02). There was an increase in mortality from percentile 10 to 50, although it was not significant (Correlational coefficient: 0.01, p = 0.85). Also, there was an increase in mortality rate from percentile 50 to 90 that was statistically significant (correlational coefficient: 0.06, p = 0.047). Finally, the results of the study indicated BMI can increase the chance of mortality by 0.19, although it was not significant. As a result, more studies are needed to better judge the relationship between BMI and mortality in burn victims.


Subject(s)
Burns , Overweight , Male , Humans , Middle Aged , Female , Body Mass Index , Cross-Sectional Studies , Burns/therapy
5.
Microsc Res Tech ; 87(3): 411-423, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37877737

ABSTRACT

This paper reports on the findings from a study that aimed to identify and characterize the constituents of Ocimum basilicum extract using gas chromatography-mass spectrometry (GC-MS) analysis, as well as assess the physicochemical properties and stability of nanoemulsions formulated with O. basilicum extract. The GC-MS analysis revealed that the O. basilicum extract contained 22 components, with Caryophyllene and Naringenin identified as the primary active constituents. The nanoemulsion formulation demonstrated excellent potential for use in the biomedical field, with a small and uniform particle size distribution, a negative zeta potential, and high encapsulation efficiency for the O. basilicum extract. The nanoemulsions exhibited spherical morphology and remained physically stable for up to 6 months. In vitro release studies indicated sustained release of the extract from the nanoemulsion formulation compared to the free extract solution. Furthermore, the developed nanoformulation exhibited enhanced anticancer properties against K562 cells while demonstrating low toxicity in normal cells (HEK293). The O. basilicum extract demonstrated antimicrobial activity against Pseudomonas aeruginosa, Candida albicans, and Staphylococcus epidermidis, with a potential synergistic effect observed when combined with the nanoemulsion. These findings contribute to the understanding of the constituents and potential applications of O. basilicum extract and its nanoemulsion formulation in various fields, including healthcare and pharmaceutical industries. Further optimization and research are necessary to maximize the efficacy and antimicrobial activity of the extract and its nanoformulation. RESEARCH HIGHLIGHTS: This study characterized the constituents of O. basilicum extract and assessed the physicochemical properties and stability of its nanoemulsion formulation. The O. basilicum extract contained 22 components, with Caryophyllene and Naringenin identified as the primary active constituents. The nanoemulsion formulation demonstrated excellent potential for biomedical applications, with sustained release of the extract, low toxicity, and enhanced anticancer and antimicrobial properties. The findings contribute to the understanding of the potential applications of O. basilicum extract and its nanoemulsion formulation in healthcare and pharmaceutical industries, highlighting the need for further optimization and research.


Subject(s)
Anti-Infective Agents , Ocimum basilicum , Oils, Volatile , Polycyclic Sesquiterpenes , Humans , Ocimum basilicum/chemistry , Delayed-Action Preparations , HEK293 Cells , Microfluidics , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry
6.
Pathol Res Pract ; 253: 154992, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103367

ABSTRACT

MicroRNAs (miRNAs) have been linked to abnormal expression and regulation in a number of diseases, including cancer. Recent studies have concentrated on miRNA Let-7e's significance in precision medicine for cancer screening and diagnosis as well as its prognostic and therapeutic potential. Differential let-7e levels in bodily fluids have the possibility to enable early detection of cancer utilizing less-invasive techniques, reducing biopsy-related risks. Although Let-7e miRNAs have been described as tumor suppressors, it is crucial to note that there exists proof to support their oncogenic activity in vitro and in in vivo. Let-7e's significance in chemo- and radiation treatment decisions has also been demonstrated. Let-7e can also prevent the synthesis of proinflammatory cytokines in a number of degenerative disorders, including musculoskeletal and neurological conditions. For the first time, an overview of the significance of let-7e in the prevention, detection, and therapy of cancer and other conditions has been given in the current review. Additionally, we focused on the specific molecular processes that underlie the actions of let-7e, more particularly, on malignant cells.


Subject(s)
MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Prognosis , Neoplasms/genetics
7.
Heliyon ; 9(12): e22761, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38076177

ABSTRACT

In this study, we developed a unique adsorbent known as extractant-impregnated resin (EIR) by surface impregnation of XAD-11600 amberlite resin with the Vesavin ligand. This resin demonstrated exceptional selectivity for the absorption of lead (Pb2+) ions from aqueous solutions. The ability of EIR to remove lead from polluted water was studied as a function of experimental parameters, including the kinetics, equilibrium, and thermodynamics of the adsorption process. The experimental results provided the basis for the fitting of equilibrium adsorption isotherms with the Langmuir model, and the maximum adsorption capacity of EIR for Pb(II) ions was determined to be approximately 1662 mg/g. Kinetic and thermodynamic studies were also conducted to gain insight into the behavior of the adsorption process. It was found that the rate of penetration of lead ions into the particle was the primary factor controlling the absorption process of lead on the surface of the porous adsorbent. Additionally, the studies demonstrated that the EIR can be utilized for multiple absorption and desorption cycles.

8.
J Biomol Struct Dyn ; : 1-9, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37909481

ABSTRACT

We analyzed the mercaptopurine adsorption on AlN nanostructures consisting of zero-dimensional nanoclusters, one-dimensional nanotubes, and two-dimensional nanosheets using calculations based on density functional theory (DFT). The adsorption energy, energy band gap, fluctuations in the energy band gap, charge transfers, and types of interactions that take place after mercaptopurine is adsorbed on the AlN nanostructures have all been calculated using DFT. The results show MP adsorption energies on AlN nanoparticles are -4.22, -5.95, and -8.70 eV. In this situation, MP molecules have been drawn to the surface due to the higher adsorption energies available on the AlN nanosheet (a process known as chemisorption). The Atoms in Molecules inquiry was conducted to learn more about and better comprehend the binding properties of the investigated AlN nanostructures utilizing mercaptopurine. Our findings indicate the mercaptopurine/AlN nanosheet bonding's electrostatic properties. Additionally, the electrical conductivity of the AlN nanostructures increases whenever mercaptopurine is adsorbed on them. This shows that the AlN nanoparticles might function as chemical sensors and offer an electrical signal in mercaptopurine. The following is the order of sensitivity: AlN nanosheet > AlN nanotube > AlN nanocluster. The outcomes indicate that the nanosheet has the most potential for mercaptopurine detection among the AlN nanostructures.Communicated by Ramaswamy H. Sarma.

9.
Cytokine ; 171: 156379, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37757536

ABSTRACT

Ovarian cancer poses significant challenges and remains a highly lethal disease with limited treatment options. In the context of ovarian cancer, interleukins (ILs) and interferons (IFNs), important cytokines that play crucial roles in regulating the immune system, have emerged as significant factors influencing its development. This article provides a comprehensive review of the involvement of various ILs, including those from the IL-1 family, IL-2 family, IL-6 family, IL-8 family, IL-10 family, and IL-17 family, in ovarian cancer. The focus is on their impact on tumor growth, metastasis, and their role in evading immune responses within the tumor microenvironment. Additionally, the article conducts an in-depth examination of the oncogenic or antitumor roles of each IL in the context of ovarian cancer pathogenesis and progression. Besides, we elucidated the enhancements in the treatment of ovarian cancer through the utilization of type-I IFN and type-II IFN. Recent research has shed light on the intricate mechanisms through which specific ILs and IFNs contribute to the advancement of the disease. By incorporating recent findings, this review also seeks to inspire further investigations into unexplored mechanisms, fostering ongoing research to develop more effective therapeutic strategies for ovarian cancer. Moreover, through an in-depth analysis of IL- and IFN-associated clinical trials, we have highlighted their promising potential of in the treatment of ovarian cancer. These clinical trials serve to reinforce the significant outlook for utilizing ILs and IFNs as therapeutic agents in combating this disease.

10.
Anal Methods ; 15(39): 5146-5156, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37753580

ABSTRACT

The present study developed a DNA biosensor to determine pemigatinib for the first time. Three-dimensional carnation flower-like Eu3+:ß-MnO2 nanostructures (3D CF-L Eu3+:ß-MnO2 NSs) and a screen-printed electrode (SPE) modified with polyaniline (PA) were employed. The double-stranded DNA was also immobilized completely on the PA/3D CF-L Eu3+:ß-MnO2 NSs/SPE. Then, electrochemical techniques were used for characterizing the modified electrode. After that, the interaction between pemigatinib and DNA was shown by a reduction in the oxidation current of guanine using differential pulse voltammetry (DPV). According to the analysis, the dynamic range of pemigatinib was between 0.001 and 180.0 µM, indicating the new electrode has a low limit of detection (LOD = 0.23 nM) for pemigatinib. Afterwards, pemigatinib in real samples was measured using the PA/3D CF-L Eu3+:ß-MnO2 NSs/SPE loaded with ds-DNA. The proposed DNA biosensor showed good selectivity toward pemigatinib in the presence of other interference analytes, such as other ions, structurally related pharmaceuticals, and plasma proteins. In addition, the interaction site of pemigatinib with DNA was predicted by molecular docking, which showed the interaction of pemigatinib with the guanine bases of DNA through a groove binding mode. Finally, we employed the t-test to verify the capability of the ds-DNA/PA/3D CF-L Eu3+:ß-MnO2 NSs/SPE for analyzing pemigatinib in real samples.

11.
Pathol Res Pract ; 249: 154758, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37660657

ABSTRACT

One of the best treatments for inflammatory diseases such as COVID-19, respiratory diseases and brain diseases is treatment with stem cells. Here we investigate the effect of stem cell therapy in the treatment of brain diseases.Preclinical studies have shown promising results, including improved functional recovery and tissue repair in animal models of neurodegenerative diseases, strokes,and traumatic brain injuries. However,ethical implications, safety concerns, and regulatory frameworks necessitate thorough evaluation before transitioning to clinical applications. Additionally, the complex nature of the brain and its intricate cellular environment present unique obstacles that must be overcome to ensure the successful integration and functionality of genetically engineered MSCs. The careful navigation of this path will determine whether the application of genetically engineered MSCs in brain tissue regeneration ultimately lives up to the hype surrounding it.


Subject(s)
COVID-19 , Mesenchymal Stem Cells , RNA, Long Noncoding , Stroke , Animals , Secretome
12.
J Mol Model ; 29(9): 272, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37540279

ABSTRACT

CONTEXT: The potential of Ni-C72 and Ni-Al36P36 as effective catalysts for O3 decomposition is examined by LH and ER mechanisms. The activation barrier energy and Gibbs free energy of reaction steps for O3 decomposition on Ni-C72 and Ni-Al36P36 are calculated. The ∆Eformation of Ni-C72 and Ni-Al36P36 are negative values and these structures are stable nano-catalysts. The Ni atoms are catalytic positions to adsorb the O3 and other important species of O3 decomposition by LH and ER mechanisms. The Ni-Al36P36 for O3 decomposition has lower Eacivation and more negative ∆Greaction than Ni-C72. The Eacivation value of rate-determining step for O3 decomposition by LH mechanism is lower than ER mechanism. The Ni-C72 and Ni-Al36P36 can catalyze the reaction steps of O3 decomposition by LH and ER mechanisms. METHODS: The structures of Ni-C72 and Ni-Al36P36 nanocages and their complexes with O3 and other important species of are optimized by PW91PW91/6-311 + G (2d, 2p) model and M06-2X/cc-pVQZ model in GAMESS software. The strcutures of nanocages and their complexes with important species of O3 decomposition by LH and ER mechanisms are optimized and their frequencies are calculated in order to demonstrate that these structures are real minima on the potential energy surface.

13.
Pathol Res Pract ; 248: 154675, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37531833

ABSTRACT

A significant number of women are identified with breast cancer (BC) every year, making it among the most prevalent malignancies and one of the leading causes of mortality globally. Despite significant progress in understanding BC pathogenesis and treatment options, there is still a need to identify new therapeutic targets and develop more effective treatments. LncRNAs have been discovered as biomarkers and a promising target for various cancers, including BC. PVT1 is a particular one of these lncRNAs, and research has indicated that it has a significant impact on the appearance and progression of BC.PVT1 is an attractive therapeutic target for BC due to its role in promoting cancer cell growth, metastasis and invasion. In addition to its potential as a treatment strategy, PVT1 may also have diagnostic value in BC. In this article, we will discuss targeting PVT1 as a treatment strategy for BC.


Subject(s)
Breast Neoplasms , RNA, Long Noncoding , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , RNA, Long Noncoding/genetics , Gene Expression Regulation, Neoplastic/genetics
14.
Pathol Res Pract ; 249: 154664, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37573621

ABSTRACT

Oxidative stress is a physiological condition that occurs when there is an imbalance between the production of reactive oxygen species (ROS) and the cell's antioxidant defense system. ROS are highly reactive molecules that can cause damage to cellular structures such as DNA, proteins, and lipids. the regulation of ROS levels and the antioxidant defense system is crucial for cancer prevention and treatment. Strategies to enhance antioxidant defenses or induce oxidative stress selectively in cancer cells are being developed as potential therapeutic approaches. targeting oxidative stress in cancer treatment is an active area of research with several potential therapeutic approaches being investigated. Developing selective and effective therapies that target oxidative stress in cancer cells while sparing normal cells will be crucial for improving cancer treatment outcomes.


Subject(s)
Antioxidants , Neoplasms , Humans , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Oxidative Stress/physiology , Proteins/metabolism , Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...