Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Saudi J Biol Sci ; 28(9): 5414-5427, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34466123

ABSTRACT

Salinity is one of the largest stresses blocking horizontal and vertical expansion in agricultural lands. Establishing salt-tolerant genotypes is a promising method to benefit from poor water quality and salinized lands. An integrated method was developed for accomplishing reliable and effective evaluation of traits stability of salt-tolerant wheat. The study aims were to estimate the genetic relationships between explanatory traits and shoot dry matter (SDM), and determine the traits stability under three salinity levels. Morphophysiological and biochemical traits were evaluated as selection criteria for SDM improvement in wheat for salinity tolerance. Three cultivars and three high-yielding doubled haploid lines (DHLs) were used. Three salt (NaCl) levels (control (washed sand), 7 and 14 dS m-1) were applied for 45 days (at the first signs of death in the sensitive genotypes). All morphophysiological traits gradually decreased as salinity levels increased, excluding the number of roots. Decreases were more visible in sensitive genotypes than in tolerant genotypes. All biochemical traits increased as salinity levels increased. Variance inflation factors (VIFs) and condition number exhibited multicollinearity for membrane stability index and polyphenol oxidase activity. After their removal, all VIFs were <10, thereby increasing path coefficient accuracy. Total chlorophyll content (CHL) and catalase (CAT) provided significant direct effects regarding genetic and phenotypic correlations for the three salinity levels and their interactions in path analysis on SDM, indicating their stability. CHL and CAT had high heritability (>0.60%) and genetic gain (>20%) and highly significant genetic correlation, co-heritability, and selection efficiencies for SDM. CHL and CAT could be used as selection criteria for salinity tolerance in wheat-breeding programs. The tolerated line (DHL21) with the check cultivar (Sakha 93) can be also recommended as novel genetic resource for improving salinity tolerance of wheat.

2.
Saudi J Biol Sci ; 27(6): 1475-1481, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32489283

ABSTRACT

Various metabolites exist in the medicinal plants have lot of potential to cure various diseases and disorders. Plants such as, Vetiveria zizanioides, Trichosanthes cucumerina, and Mollugo cerviana were collected from Western Ghats, Tamilnadu, India. Phytochemicals were extracted from these plants using various organic solvents and tested against Gram-positive and Gram-negative bacteria. The phytochemicals such as, carbohydrate, alkaloids, steroids, saponins, flavonoids and tannin were detected from these medicinal plants. Among the extracts, methanol showed potent activity and this solvent was used to extract polyherbal medicinal plants. Methanol extract of V. zizanioides was found to be highly active against E. coli (27 ± 2 mm), P. mirabilis (19 ± 3 mm) and B. subtilis (18 ± 2 mm). Ethyl acetate extract showed high activity against E. coli (24 ± 2 mm), P. mirabilis (22 ± 3 mm) and B. subtilis (20 ± 1 mm). These three plants were taken at 1:1:1 ratio and extracted with methanol at 1:10 ratio and synergistic activity was tested against bacterial pathogens. Synergistic activity of polyherbal extract was analyzed. The extracted crude herbal medicine was found to be effective against Staphylococcus aureus, E. coli, Enterbacter sp., Pseudomonas aeruginosa, Bacillus subtilis and Proteus mirabilis. The zone of inhibition was 33 ± 3 mm, 17 ± 2 mm, 22 ± 2 mm, 40 ± 2 mm, 33 ± 1 mm and 38 ± 2 mm zone of inhibition against E. coli, S. aureus, P. aeruginosa, P. mirabilis, B. subtilis and Enterobacter sp. Polyherbal extract was found to be highly effective against P. mirabilis and Enterobacter sp. MIC values of polyherbal extract ranged from 29 ± 2.5 µg/ml to 34 ± 2.5 µg/ml. MIC value was found to be less against P. mirabilis and was high against S. aureus. Antioxidant property varied between 49 ± 3% and 95.3 ± 2%. At 20 µg/ml antioxidant activity was reported as 49 ± 3% and it was increased at higher concentrations of polyherbal extract. Two cell lines (HeLa and MCF cell lines) were selected to analyze cytotoxic activity of polyherbal extract. The methanol extract of polyherbal fraction showed cytotoxicity against these two cell lines. The LC50 value was 467 ± 2.9 µg/ml against HeLa cell line and >800 µg/ml against MCF-7 cell lines. The polyherbal extract showed antibacterial, antioxidant and anticancer activities.

3.
Saudi J Biol Sci ; 27(2): 682-688, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32210688

ABSTRACT

In this study, phyto-constituents, anti-bacterial and anticancer activity of Azadirachta indica A. Juss and Melia azedarach Linn was analyzed. High Performance Liquid Chromatography (HPLC) and Thin Layer Chromatography (TLC) fingerprint profile of methanol extract of A. indica and M. azedarach was carried out. The present findings showed the presence of phytochemicals such as, steroids, alkaloids, phenols, flavonoids, saponins, tannins, anthraquinone and aminoacids in A. indica and M. azedarach extracts. HPLC profiling of methanolic extract of A. indica and M. azaderach revealed eleven and ten fractions of compounds were visualized in the form of peak. In TLC methanolic extract of A. indica was separated by eight distinct phenolic and three steroidal bands and M. azaderach showed sixteen distinct phenolic and three different steroidal bands. In antibacterial activity, Among the various extracts 50 µg/ml methanolic extracts of A. indica showed high activity against K. pneumoniae (14 mm) and M. azedarach showed high activity against S. aureus (15 mm). The results suggest that the crude methanolic extracts of A. indica and M. azedarach possess significant phytochemical properties compared to other extracts and hence the phytochemicals of M. azedarach and A. indica can be exploited for plant based anticancer and antimicrobial agents in the near future.

4.
Saudi J Biol Sci ; 27(1): 163-172, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31889831

ABSTRACT

Phytochemical composition, in vitro antioxidant and antiproliferative activity against HepG2 cells were studied in the kernels of apricot cultivars grown in the northern areas of Pakistan. Relatively, the kernel of Habbi cultivar/AP-12 depicted significant potential to scavenge DPPH and ABTS+ free radicals as well as oxygen radical absorbance capacity along with highest contents of total flavonoids, phenolics, chlorogenic and syringic acids on dry weight basis. The average concentration of quercetin ranged 0.072-1.343 mg/100 g, and of EGCG from 0.713 to 6.521 mg/100 g with maximum concentration in Hulappa/AP-3 and Kho Chali-Khatta 3/AP-17, respectively. Amygdalin content was highest (1145 mg/100 g) in the kernel of Balaani/AP-14. Highest inhibition of HepG2 cells was found in the kernel of Waflu Chuli/AP-9 (EC50 = 15.70 ±â€¯3.77 mg/mL). The PCA showed significant contributions of polyphenols and flavonoids towards biochemical assays, while CA revealed similarities and associations among various cultivars. Our study revealed that Habbi, Waflu Chuli, Thukdeena and Balaani kernels are rich sources of bioactive compounds and possess significant antioxidant and anticancer activity and can contribute considerably in the prevention and treatment of chronic health disorders.

5.
Saudi J Biol Sci ; 27(1): 524-534, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31889878

ABSTRACT

Cedrus deodara is economically and ethnobotanically an important forest tree and is shown to be at decline in Northern areas of Pakistan in recent years mainly due to high concentration of Nitrogen in forests. Ectomycorrhizal (ECM) association forming fungi enables the forest trees to develop optimally by absorbing water from the rhizosphere through their absorptive hyphae and by making available the nutrients by mobilization of N and P from the organic substrates. This study was conducted to identify the ECM strains from C. deodara rhizosphere and to analyse the impact of high N load on the C. deodara seedlings to establish N critical load value for coniferous forests of Pakistan. Six new fungal strains were identified from the rhizosphere of C. deodara and were registered at GenBank (NCBI) as Emmia latemarginata strain ACE1, Aspergillus terreus strain ACE2, Purpureocillium lilacinum strain ACE3, Talaromyces pinophilus strain ACE4, A. fumigatus strain ACE5 and T. pinophilus strain ACE6 with accession numbers MH145426, MH145427, MH145428, MH145429, MH145430 and MH547115. Four out of six isolated strains were inoculated with seedlings of C. deodara singly and in consortium (CN) in combination with nitrogen load of 0 (C), 25 (T1), 50 (T2), 100 kg N ha-1 yr-1 (T3). Agronomic, physiological and gene expression studies for ExpansinA4 (EXPA4) and Cystatins (Cys) were made to analyse the impact of fungal strains in relation to high N stress. This study suggests a positive impact of T1 (25 kg N ha-1 yr-1) Nitrogen load and a negative impact of T3 (100 kg N ha-1 yr-1) on growth parameters and expression patterns of EXPA4 and Cys genes. Peroxidase (POX) activity decreased in the order ACE5 > ACE2 > C > ACE3 > ACE1 > CN. However, the results of Superoxide dismutase (SOD) showed decreasing trend in the order ACE5 > C > CN > ACE1 > ACE2 > ACE3. Strain ACE3 was shown to have a positive impact on the seedlings in terms of growth, physiology and expression of genes. Present study suggests that newly identified fungal strains showing positive impact on the growth and physiology of C. deodara could be used for the propagation of this economically important plant in Pakistan after pathogenicity test.

6.
J Infect Public Health ; 13(2): 177-185, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31582296

ABSTRACT

BACKGROUND: Environmental exposure to toxicants poses high risk to develop reproductive and developmental chronic toxicity in man. Toluene is one of the commonest industrial agents whose exposure is attributed with potential to induce reproductive and developmental toxicity. Since they contaminate the immediate environment of air and water to which humans are exposed, its containment is of great public health importance. Conventional treatment modalities fail owing to the difficulty to detect these highly volatile agents in environment and human body. The peril of such hazardous exposures is evident only when irreversible structural and functional damages have incurred. In such instances, prevention gains an upper hand when compared to therapeutic interventions. Several natural compounds derived from medicinal herbs possess potential to curb toxicities induced by such xenobiotic agents. Among them Boerhavia diffusa Linn. is a widely distributed and common herb attributed with antitoxic potential and capability for antioxidant defence. A study was performed on the prophylactic efficacy of aqueous extract of B. diffusa in curbing toluene induced developmental toxicity in Drosophila melanogaster. METHODS: The study consisted of a preliminary phytochemical screening and HPTLC profiling of B. diffusa aqueous extract (BDAE). LC50 of toluene was assessed and a sublethal dose of 200ppm was fixed for the study. Four doses of BDAE; 25, 50, 100 and 200mg/ml designated as Low dose, medium dose 1, medium dose 2 and high dose was used for the study. The parameters used for the study included the determination of larval period, pupal period, percentage of egg hatching, morphometric analysis of egg, larvae, pupae and adults, fertility, fecundity, lifespan and levels of antioxidant enzymes such as catalase, glutathione-S-transferase and superoxide dismutase. RESULTS: The phytochemical and HPTLC characters were as per the pharmacopoeial standards. LC50 of toluene was found to be 430ppm in this study. BDAE at medium dose 2 and high dose significantly prevented the deterioration of reproductive and developmental toxicity parameters of larval period, pupal period, percentage of egg hatching, morphometric characters of larva, pupa and adult, fertility, fecundity and lifespan in drosophila. Also the drug significantly elevated the levels of antioxidant enzymes. CONCLUSION: Toluene exposure during lifetime is inevitable. B. diffusa, equipped with its rich active ingredients prevented toluene induced developmental and reproductive toxicity in Drosophila. This medicinal herb provides a ray of hope in preventing environmental toxin induced reproductive and developmental toxicity.


Subject(s)
Antioxidants/pharmacology , Drosophila melanogaster/growth & development , Nyctaginaceae/chemistry , Plant Extracts/pharmacology , Toluene/toxicity , Animals , Antioxidants/administration & dosage , Drosophila melanogaster/drug effects , Environmental Exposure , Humans , Plant Extracts/administration & dosage , Pre-Exposure Prophylaxis , Reproduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...