Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 466: 133652, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38309158

ABSTRACT

This study investigates the ecotoxicological effects of BDE-209, a persistent organic pollutant (POP) prevalent in Kuwait's coastal-industrial areas, on benthic foraminiferal communities. We conducted a mesocosm experiment in which we exposed benthic foraminiferal communities sampled from the coastal-industrial areas of Kuwait to a gradient of BDE-209 concentrations (0.01 to 20 mg/kg). The impact of exposure was assessed using live-staining and metabarcoding techniques. Despite the significantly different taxonomic compositions detected by the two techniques, our results show that BDE-209 significantly affects foraminiferal communities, with moderately high concentrations leading to reduced α-diversity and considerable taxonomic shifts in both molecular and morphological assemblages. At concentrations of 10 and 20 mg/kg, no living foraminifera were detected after 8 weeks, suggesting a threshold for their survival under BDE-209 exposure. The parallel responses of molecular and morphological communities confirm the reliability of both assessment methods. This study is the first to investigate the reaction of eukaryotic communities, specifically foraminifera, to POPs such as BDE-209, generating valuable insights that have the potential to enhance field studies and aid the refinement of sediment quality guidelines.


Subject(s)
Foraminifera , Geologic Sediments , Halogenated Diphenyl Ethers , Foraminifera/genetics , Biodiversity , Reproducibility of Results , Environmental Monitoring/methods
2.
Sci Total Environ ; 833: 155093, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35421459

ABSTRACT

The rapid urbanization and industrialization of Kuwait and the consequent effluent discharges into marine environments have resulted in a degradation of water and sediment quality in the coastal marine ecosystems such as in the Kuwait Bay. This study investigates the ecological response of benthic foraminifera (protists) to environmental stress in the Kuwait Bay. The traditional morphological approach was compared to the innovative environmental DNA (eDNA) metabarcoding to evaluate the ecological quality status (EcoQS). Forty-six surface sediment samples were collected from selected stations in the Kuwait Bay. To detect the pollution gradient, environmental parameters from water (e.g., salinity, pH, dissolved oxygen) and sediment (e.g., grain-size, trace metals, total organic carbon, total petroleum hydrocarbons) were measured at each station. Although the foraminiferal assemblages were different in the morphological and molecular datasets, the species turnover was congruent and statistically significant. Diversity-based biotic indices derived from both morphological and metabarcoding approaches, reflect the environmental stress gradient (i.e., organic and metal contaminations) in the Kuwait Bay. The lowest values of EcoQS (i.e., bad to poor) are found in the innermost part (i.e., Sulaibikhat Bay and Ras Kazmah), while higher EcoQS values occur in the outer part of the bay. This study constitutes the first attempt to apply the foraminiferal metabarcoding to assess the EcoQS within the Arabian Gulf and presents its advantages compared to the conventional morphological approach.


Subject(s)
Foraminifera , Bays , Ecosystem , Environmental Monitoring/methods , Geologic Sediments/chemistry , Kuwait , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...