Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Phytoremediation ; 26(2): 228-240, 2024.
Article in English | MEDLINE | ID: mdl-37431240

ABSTRACT

Two extremophilic cyanobacterial-bacterial consortiums naturally grow in extreme habitats of high temperature and hypersaline were used to remediate hexavalent chromium and molybdenum ions. Extremophilic cyanobacterial-bacterial biomasses were collected from Zeiton and Aghormi Lakes in the Western Desert, Egypt, and were applied as novel and promising natural adsorbents for hexavalent chromium and molybdenum. Some physical characterizations of biosorbent surfaces were described using scanning electron microscope, energy-dispersive X-ray spectroscopy, Fourier transformation infrared spectroscopy, and surface area measure. The maximum removal efficiencies of both biosorbents were 15.62-22.72 mg/g for Cr(VI) and 42.15-46.29 mg/g for Mo(VI) at optimum conditions of pH 5, adsorbent biomass of 2.5-3.0 g/L, and 150 min contact time. Langmuir and Freundlich adsorption models were better fit for Cr(VI), whereas Langmuir model was better fit than the Freundlich model for Mo(VI) biosorption. The kinetic results revealed that the adsorption reaction obeyed the pseudo-second-order model confirming a chemisorption interaction between microbial films and the adsorbed metals. Zeiton biomass exhibited a relatively higher affinity for removing Cr(VI) than Aghormi biomass but a lower affinity for Mo(VI) removal. The results showed that these extremophiles are novel and promising candidates for toxic metal remediation.


Even though many researchers worked on the field of metal bioremediation, most use single organism or extracted biogenic materials for heavy metals removal. The novelty of this study is the application of a consortium of cyanobacteria and bacteria from extreme habitats (hyper-salinity, high temperature, harsh weather conditions, high intensity of light and UV light) in the field of environmental safety. This specialized microbial film composed of a diverse group of adapted organisms that co-operate between each other making them more effective bio-remediating agent. This study examined the effectiveness of these consortia as metals bioremediator and cover the gap of research results from the scarce application of novel, cheap and eco-friendly extremophiles in toxic metals removal.


Subject(s)
Cyanobacteria , Extremophiles , Water Pollutants, Chemical , Molybdenum , Kinetics , Biodegradation, Environmental , Chromium/chemistry , Adsorption , Ions , Hydrogen-Ion Concentration , Water Pollutants, Chemical/analysis
2.
Toxics ; 10(11)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36355948

ABSTRACT

The synthesis of a photo-catalyst with a narrow bandgap and efficient capability to degrade contaminants in the presence of sunlight is currently challenging but exciting. In this work, an efficient photocatalytic ternary nanocomposite g-C3N4/Cu@CdS has been synthesized successfully by using the co-precipitation method. The synthesized composite was then characterized by SEM, XRD studies, EDX analysis, and ultra-violet-visible (UV-VIS) spectroscopy. The catalytic efficiency for the methylene blue (MB) dye and drug degradation (ciprofloxacin) was assessed by UV-visible absorption spectra. Gram-positive and Gram-negative bacteria were used to test the fabrication composite's antibacterial properties. Various compositions (1%, 3%, 5%, 7%, and 9%) of/Cu@CdS nanocomposite (NCs) and 20%, 30%, 40%, 50%, and 60% of g-C3N4 NCs were prepared. Results reveal that 5%Cu@CdS and 40%g-C3N45%Cu@CdS showed maximum antibacterial activity and photocatalytic degradation of dye and drug. The X-ray pattern showed no remarkable change in doped and pristine CdS nanoparticles (NPs). The efficient photocatalytic degradation activity of the fabricated ternary nanocomposite against MB dye and ciprofloxacin an antibiotic drug makes it a viable contender for solving environmental problems.

3.
Bioinorg Chem Appl ; 2018: 3936178, 2018.
Article in English | MEDLINE | ID: mdl-30271429

ABSTRACT

Wild herbs (Origanum (OR) and Lavandula (LV)) were used as environment-friendly adsorbents in this study. The adsorbents were used for adsorption of Cu and Ba from water. The adsorption of heavy metals onto OR and LV was dependent on particle size, dose, and solution pH. The diameter of adsorbent particles was less than 282.8 nm. The adsorption follows second-order kinetics. Langmuir and Freundlich models have been applied to describe the equilibrium data, and the thermodynamic parameters, the Gibbs free energy, ∆G°, enthalpy, ∆H°, and entropy, ∆S°, have been determined. The positive value of ∆H° suggests that the adsorption of heavy metals by the wild herbs is endothermic. The negative values of ∆G° at all the studied temperatures indicate that the adsorption is a spontaneous process. It can be concluded that OR and LV are promising adsorbents for the removal of heavy metals from aqueous solutions over a range of concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL
...