Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 145(9): 3095-3107, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35718349

ABSTRACT

The hereditary spastic paraplegias (HSP) are among the most genetically diverse of all Mendelian disorders. They comprise a large group of neurodegenerative diseases that may be divided into 'pure HSP' in forms of the disease primarily entailing progressive lower-limb weakness and spasticity, and 'complex HSP' when these features are accompanied by other neurological (or non-neurological) clinical signs. Here, we identified biallelic variants in the transmembrane protein 63C (TMEM63C) gene, encoding a predicted osmosensitive calcium-permeable cation channel, in individuals with hereditary spastic paraplegias associated with mild intellectual disability in some, but not all cases. Biochemical and microscopy analyses revealed that TMEM63C is an endoplasmic reticulum-localized protein, which is particularly enriched at mitochondria-endoplasmic reticulum contact sites. Functional in cellula studies indicate a role for TMEM63C in regulating both endoplasmic reticulum and mitochondrial morphologies. Together, these findings identify autosomal recessive TMEM63C variants as a cause of pure and complex HSP and add to the growing evidence of a fundamental pathomolecular role of perturbed mitochondrial-endoplasmic reticulum dynamics in motor neurone degenerative diseases.


Subject(s)
Calcium Channels , Mitochondria , Spastic Paraplegia, Hereditary , Calcium Channels/genetics , Endoplasmic Reticulum/genetics , Humans , Mitochondria/pathology , Mutation , Spastic Paraplegia, Hereditary/genetics
2.
Pediatr Neurol ; 46(2): 89-93, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22264702

ABSTRACT

Hyperekplexia is characterized by neonatal hypertonia and exaggerated startle reflex in response to loud noise or tactile stimuli. Mutations in patients with hyperekplexia were evident in several genes encoding proteins involved in glycinergic neurotransmission, i.e., glycine receptor α and ß subunits, collybistin, gephyrin, and glycine transporter 2. We clinically and genetically characterized two large, unrelated consanguineous families with hyperekplexia. Affected members of the two families manifested hyperekplexia with mild mental retardation. Patients exhibited a novel homozygote c.593G>C missense mutation in GLRA1, resulting in amino acid substitution p.W170S in the corresponding mature glycine receptor α1 subunit. This mutation was absent in 400 randomly selected chromosomes in the same population. In conclusion, a novel p.W170S mutation in the extracellular ligand binding domain of glycine receptor α1 subunit was detected in patients with hyperekplexia and mild mental retardation.


Subject(s)
Intellectual Disability/genetics , Muscle Hypertonia/genetics , Receptors, Glycine/genetics , Reflex, Abnormal/genetics , Reflex, Startle/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Molecular Sequence Data , Mutation, Missense , Oman , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...